首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-phase ceramic samples of La1–xNdxInO3 (0.007 ≤ x ≤ 0.05), LaIn0.99M0.01O3, and La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+) solid solutions have been prepared by solid-state reactions, and their crystal structure, magnetic field dependences of their specific magnetization at 5 and 300 K, and temperature dependences of their molar magnetic susceptibility have been studied. It has been shown that the 300-K specific magnetization of the La1–xNdxInO3 (x = 0.02, 0.05), La0.95Nd0.05In0.995M0.005O3 (M = Cr3+ and Mn3+), and LaIn0.99Mn0.01O3 solid solutions increases linearly with increasing magnetic field strength up to 14 T and that the magnitude of the 300-K specific magnetization of the La0.993Nd0.007InO3 and LaIn0.99Cr0.01O3 solid solutions increases linearly, but they have diamagnetic magnetization. At a temperature of 5 K, the magnetization of all the indates studied here increases nonlinearly with increasing magnetic field strength, gradually approaching magnetic saturation, without, however, reaching it in a magnetic field of 14 T. In the temperature range where the Curie–Weiss law is obeyed (5–30 K), the effective magnetic moments obtained for the Nd3+ ion (\({\mu _{effN{d^{3 + }}}}\)) in the La1–xNdxInO3 solid solutions with x = 0.007, 0.02, and 0.05 are 2.95μB, 3.09μB, and 2.75μB, respectively, which is well below the theoretical value \({\mu _{effN{d^{3 + }}}}\)= 3.62μB. The effective magnetic moments of the Cr3+ and Mn3+ ions in the LaIn0.99Cr0.01O3 and LaIn0.99Mn0.01O3 solid solutions are 3.87μB and 5.11μB, respectively, and differ only slightly from the theoretical values \({\mu _{effC{r^{3 + }}}}\)= 3.87μB and \({\mu _{effM{n^{3 + }}}}\)= 4.9μB.  相似文献   

2.
We have studied the magnetic properties of the new compound Er2Mn2/3Re4/3O7 prepared by reacting Er3ReO8, ReO2, MnO, and metallic Re at 1020°C in silica tubes sealed off under vacuum. The compound is shown to have the zirkelite structure with hexagonal cell parameters a = 7.3174(6) Å and c = 17.365(1) Å (sp. gr. P31211, Z = 6). Magnetization data obtained in the range 2–300 K demonstrate that, above ~150 K, its magnetic susceptibility exhibits Curie-Weiss behavior with an effective magnetic moment of 9.50μB. Dynamic magnetic susceptibility measurements point to spin-glass behavior of this compound at low temperatures.  相似文献   

3.
The critical behavior of perovskite manganite La0.67Ba0.33Mn0.95Fe0.05O3 at the ferromagnetic–paramagnetic has been analyzed. The results show that the sample exhibited the second-order magnetic phase transition. The estimated critical exponents derived from the magnetic data using various such as modified d’Arrott plot Kouvel–Fisher method and critical magnetization M(T C, H). The critical exponents values for the La0.67Ba0.33Mn0.95Fe0.05O3 are close to those expected from the mean field model β = 0.504 ± 0.01 with T C = 275661 ± 0.447 (from the temperature dependence of the spontaneous magnetization below T C ), γ = 1.013 ± 0.017 with T C = 276132 ± 0.452 (from the temperature dependence of the inverse initial susceptibility above T C ), and δ = 3.0403 ± 0.0003. Moreover, the critical exponents also obey the single scaling equation of M(H, ε) = |ε| β f ±(H/|ε| β+γ ).  相似文献   

4.
The structural, magnetic, electronic, and elastic properties of the new Mn-based Heusler alloy Mn2RuSi at high pressure have been investigated using the first-principles calculations within density functional theory. Present calculations predict that Mn2RuSi in stable \(F\bar {4}3m\) configuration is a ferrimagnet with an optimized lattice parameter 5.76 Å. The total spin magnetic moment is 2.01 μ B per formula unit and the partial spin moments of Mn (A) and Mn (B) which mainly contribute to the total magnetic moment are 2.48 and ?0.66 μ B, respectively. Mn2RuSi exhibits half metallicity with an energy gap in the spin-down channels. The study of phase stability indicates that the elastic stiffness coefficients of Mn2RuSi with \(F\bar {4}3m\) structure satisfy the traditional mechanical stability restrictions until up to 100 GPa. In addition, various mechanical properties including bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio along with elastic wave velocitieshave also been obtained and discussed in details in the pressure range of 0–100 GPa based on the three principle elastic tensor elements C 11, C 12, and C 44 for the first time.  相似文献   

5.
Ni0.4Co0.6Fe2O4 nanopowders were prepared via the co-precipitation route followed by annealing treatment. The structural and magnetic properties of the as-synthesized samples were determined by XRD, FT-IR, TG-DSC, and PPMS measurements, respectively. The XRD patterns indicated a single-phase cubic spinel structure for all the Ni-Co ferrite samples, regardless of adding sequences of the reactants or NaOH concentration. The analysis of the XRD patterns revealed that the enhancement in lattice constant with increasing NaOH concentration is related to the prevention of oxidization of Co2+ ions in the Ni-Co ferrite lattice. The FT-IR spectra indicated that samples prepared in the B process have fewer impurities than those prepared in the A process. The enhancement in saturation magnetization with the increase in sodium hydroxide concentration could be attributed to the strengthening of super-exchange interaction between A and B sublattices, due to replacements of Co3+ ions (magnetic moment of 0 μ B) by Co2+ ions (magnetic moment of 3 μ B) at B sublattices. The obvious increase in the coercivity field with the increase in concentration of NaOH solutions can be interpreted in terms of enhancement of magneto-crystalline anisotropy that originated from gradual substitutions of Co3+ ions with Co2+ ions at the octahedral sites.  相似文献   

6.
The compound (NH4)3[UO2(CH3COO)3]2(NCS) (I) was synthesized and examined by single crystal X-ray diffraction analysis. The compound crystallizes in the rhombic system with the unit cell parameters a = 11.5546(4), b = 18.5548(7), c = 6.7222(3) Å, V = 1441.19(10) Å3, space group P21212, Z = 2, R = 0.0345. The uranium-containing structural units of crystals of I are isolated mononuclear groups [UO2(CH3COO)3]? belonging to crystal-chemical group AB 3 01 (A = UO 2 2+ , B01 = CH3COO?) of uranyl complexes. The specific features of packing of the uranium-containing complexes in the crystal structure are considered.  相似文献   

7.
Magnetic entropy change (?ΔS M ) of Nd0.67 Ba0.33Mn0.98Fe0.02O3 perovskite have been analyzed by means of theoretical models. An excellent agreement has been found between the (ΔSM) values estimated by Landau theory and those obtained using the classical Maxwell relation. In order to estimate the spontaneous magnetization M s pont(T), we used the mean-field theory to analyses the (ΔSM) vs. M 2 data. The obtained M s pont(T) values are in good agreement with those found from the classical extrapolation from the Arrott plots(H/M vs. M 2), confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in our system. At a relatively low magnetic field, a phenomenological model has been used to estimate the values of the magnetic entropy change. The results are in good agreement with those obtained from the experimental data using Maxwell relation.  相似文献   

8.
We report the synthesis of a single-phase rare-earth perovskite ErFe0.75Cr0.25O3 polycrystalline and its magnetic properties. A transition occurs at temperature T N = 120 K below which we observe a weak magnetic moment from the canted antiferromagnetism. Interestingly, ErFe0.75Cr0.25O3 reveals the compensation-like behavior at T comp?like = 27 K, where the net magnetic moments of transition-metal ions are antiparallel and equal to the induced net moment of Er3+ ions, and the paramagnetic contribution of Er3+ moment presenting a nonzero magnetization. The temperature-dependent magnetization measurement shows a spin reorientation transition from Γ4 to Γ1 at 6 K. Furthermore, it is also observed that there is a spin-flop transition at low temperature induced by external magnetic field in Γ1 state (antiferromagnetic state). The interaction between (Fe/Cr)-3d and Er-4f electrons drives an extremely interesting spin reorientation transition which is highly sensitive to magnetic field and temperature.  相似文献   

9.
A series of Gd11–xy Yb x Er y GeP3O26 germanate phosphates differing in the ratio of the Yb3+ and Er3+ active ions have been synthesized, and their luminescence spectra have been measured. According to X-ray diffraction characterization results, all of the synthesized germanate phosphates are single-phase and have a triclinic structure (sp. gr. P1). We have measured upconversion luminescence spectra due to the Er3+ 2H11/2, 4S3/24I15/2 and 4F9/24I15/2 radiative transitions in the synthesized gadolinium ytterbium erbium germanate phosphates and determined the luminescence upconversion energy yield (B en) in Gd11–xy Yb x Er y GeP3O26. The effects of the concentrations and ratio of the dopants in the Gd11(GeO4)(PO4)3O10 germanate phosphate host on B en and the ratio of the luminescence intensities in the red and green spectral regions (R/G) have been assessed.  相似文献   

10.
MgCo2O4 samples were synthesized by inverse co-precipitation method. The formation of a single-phase spinel structure was confirmed by X-ray diffraction measurements and Fourier-transform infrared spectroscopy. The samples crystallized in a face-centered cubic structure with Fd-3m space group as revealed from the Rietveld refinement of X-ray diffraction data. Magnetic measurements carried out in a broad temperature range of 5–300 K showed antiferromagnetic to paramagnetic phase transition (Neel temperature) observed at 101 K. Magnetic susceptibility data fitted using the Curie Weiss law and effective Bohr magnetic moment (μeff) for Co atoms was determined. Calculated μeff comes out to be 3.05 μB. These results were correlated to the spin states of Co3+ atoms. A small hysteresis in the field-dependent magnetization MH loop taken at 5 K indicates the existence of weak ferromagnetism in this system. The electrical resistivity measurement in the temperature range 77–750 K displayed the semiconducting-like behavior for this system.  相似文献   

11.
Mn2SnTe4 was synthesized by direct fusion using the anneal method. X-ray powder diffraction analysis indicated that this material crystallizes in the olivine-type structure, space group Pnma, Z = 4, with unit cell parameters: a = 14.020(2) Å, b = 8.147(1) Å, c = 6.607(1) Å, V = 754.7(2) Å3. The Rietveld refinement converged to the figures of merit, R p = 6.9%, R wp = 8.5%, R exp = 6.0%, χ2 = 2.0 and S = 1.4.  相似文献   

12.
In this work, we studied in detail the magnetic and magnetocaloric properties of the La0.7Ca0.2Ba0.1MnO3 compound according to the phenomenological model. Based on this model, the magnetocaloric parameters such as the maximum of the magnetic entropy change ΔS M and the relative cooling power (RCP) have been determined from the magnetization data as a function of temperature at several magnetic fields. The theoretical predictions are found to closely agree with the experimental measurements, which make our sample a suitable candidate for refrigeration near room temperature. In addition, field dependences of \({{\Delta } S}_{\mathrm {M}}^{\max }\) and RCP can be expressed by the power laws \({\Delta S}_{\mathrm {M}}^{\max }\approx a\)(μ 0 H) n and RCP ≈b(μ 0 H) m , where a and b are coefficients and n and m are the field exponents, respectively. Moreover, phenomenological universal curves of entropy change confirm the second-order phase transition.  相似文献   

13.
Single-phase samples of Mn(Cr1?x Al x )2O4 (x = 0 – 0.30) with cubic spinel structure were prepared and the lattice constant is found to decrease from a = 8.4396 Å for x = 0 to a = 8.3801 Å for x = 0.30. The substitution of Al at Cr site is confirmed from the blue shift of Raman modes. Magnetization measurements and analysis show all the prepared samples exhibit ferrimagnetic transition with transition temperature in the range of 46 K for x = 0 to 33 K for x = 0.30. The saturation magnetization (M s ) and the estimated anisotropy constant (K) show an anomalous behavior up to x = 0.10 and beyond that they decrease monotonously. They are explained by considering different site preferences of Al 3+ ions as the doping concentration is increased. The theoretical and experimental effective magnetic moment of the samples is found to be comparable and it decreases with increase in Al concentration.  相似文献   

14.
In order to obtain high temperature coefficient of resistance (TCR) value of La0.67Ca0.33MnO3:Ag x (LCMO:Ag x ) composites, samples with different Ag contents (x?=?0, 0.1, 0.2, 0.25, 0.3, and 0.5) were prepared by sol–gel method. X-ray diffraction analyses indicated that all samples had orthorhombic perovskite structures. As x increased, lattice parameters (a, b, c) and cell volumes underwent slight expansions. Interestingly, the addition of Ag dramatically affected TCR and magneto-resistance (MR) values. Elevated TCR value up to 53.46%·K?1 at 277 K was observed for LCMO:Ag x composites with added Ag at the composition of x?=?0.1. Meanwhile, MR value at 263 K reached 71% at the magnetic field of 1 T for samples with Ag composition of x?=?0.25. The increase in Mn4+/Mn3+ ratio and improvement in crystallization caused by added Ag was found responsible for the elevated values of TCR, MR, and Tp. These findings may have practical use in high-performance magneto-resistive manganites.  相似文献   

15.
La0.45Dy0.05Ca0.5Mn0.9V0.1O3, prepared by solid-state route, was characterized using x-ray diffraction at room temperature. The Rietveld refinement shows that the sample crystallizes in orthorhombic structure with Pbnm space group. A secondary phase LaVO4 has been also detected. The temperature dependence of the magnetization was investigated to determine the characteristics of the magnetic transition. The sample exhibits a paramagnetic-ferromagnetic transition (PM-FM) at T C = 81 ± 0.7 K when temperature decreases. The study of the inverse of susceptibility reveals the presence of ferromagnetic clusters in the paramagnetic region. A metamagnetic transition was observed from the M(H) curves and the magnetic entropy change was calculated from magnetization curves at different temperatures in order to evaluate the magnetocaloric effect.  相似文献   

16.
The T-x phase diagram of the Ag-Sn-S-Br system has been studied in the composition region Ag8SnS6-Ag2SnS3-AgBr, and a compound of composition Ag6SnS4Br2 has been identified. Ag6SnS4Br2 has a new structure, closely related to that of Ag6GeS4Br2: sp. gr. Pnma, a = 6.67050(10), b = 7.82095(9), c = 23.1404(3) Å, Z = 4, R B = 0.0519, R wp = 0.0782, χ2 = 1.36.  相似文献   

17.
X-ray diffraction data are presented for combustion products in the Al-W-N system. New, nonequilibrium intermetallic compounds have been identified, their diffraction patterns have been indexed, and their unit-cell parameters have been determined. The phases α-and β-WAl4 are shown to exist in three isomorphous forms, differing in unit-cell centering. The phases α′-, α″-, and α?-WAl4 are monoclinic, with a 0 = 5.272 Å, b 0 = 17.770 Å, c 0 = 5.218 Å, β = 100.10°; point groups C12/c1, A12/n1, I12/a1, respectively. The phases β′-, β″-, and β?-WAl4 are monoclinic, with a 0 = 5.465 Å, b 0 = 12.814 Å, c 0 = 5.428 Å, β = 105.92°; point groups A112/m, B112/m, I112/m, respectively. The compounds WAl2 and W3Al7, identified each in two isomorphous forms, differ in cell metrics (doubling) but possess the same point group: P222. WAl 2 : orthorhombic, a 0 = 5.793 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. WAl 2 : orthorhombic, a 0 = 11.586 Å, b 0 = 3.740 Å, c 0 = 6.852 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 6.225 Å, b 0 = 4.806 Å, c 0 = 4.437 Å. W3Al 7 : orthorhombic, Pmm2, a 0 = 12.500 Å, b 0 = 4.806 Å, c 0 = 8.874 Å. The new phase WAl3: triclinic, P1, a 0 = 8.642 Å, b 0 = 10.872 Å, c 0 = 5.478 Å, α = 104.02°, β = 64.90°, γ = 107.15°.  相似文献   

18.
We present an extensive study of the magnetic properties of a novel La0.5Ba0.5MnO3 perovskite material prepared by the hydrothermal method. The explored sample was structurally studied by the x-ray diffraction (XRD) method which confirms the formation of a pure cubic phase of a perovskite structure with Pm3m space group. The magnetic properties were probed by employing temperature M (T) and external magnetic field M (μoH) dependence of magnetization measurements. A magnetic phase transition from ferromagnetic to paramagnetic phase occurs at 339 K in this sample. The maximum magnetic entropy change (\(\left | {{\Delta } S}_{M}^{\max } \right |\)) took a value of 1.4 J kg??1 K??1 at the applied magnetic field of 4.0 T for the explored sample and has also been found to occur at Curie temperature (TC). This large entropy change might be instigated from the abrupt reduction of magnetization at TC. The magnetocaloric effect (MCE) is maximum at TC as represented by M (μoH) isotherms. The relative cooling power (RCP) is 243.2 J kg??1 at μoH =?4.0 T. Moreover, the critical properties near TC have been probed from magnetic data. The critical exponents δ, β, and γ with values 3.82, 0.42, and 1.2 are close to the values predicted by the 3D Ising model. Additionally, the authenticity of the critical exponents has been confirmed by the scaling equation of state and all data fall on two separate branches, one for T < TC and the other for T > TC, signifying that the critical exponents obtained in this work are accurate.  相似文献   

19.
The effects of Ba 2+ doping on the electrical and magnetic properties of charge-ordered Pr0.6Ca0.4MnO3 were investigated through electrical resistivity and AC susceptibility measurements. X-ray diffraction data analysis showed an increase in unit cell volume with increasing Ba 2+ content indicating the possibility of substituting Ba 2+ for the Ca-site. Electrical resistivity measurements showed insulating behavior and a resistivity anomaly at around 220 K. This anomaly is attributed to the existence of charge ordering transition temperature, \(T^{\mathrm {R}}_{\text {CO}}\) for the x = 0 sample. The Ba-substituted samples exhibited metallic to insulator transition (MI) behavior, with transition temperature, T MI, increasing from ~98 K (x = 0.1) to ~122 K (x = 0.3). AC susceptibility measurements showed ferromagnetic to paramagnetic (FM-PM) transition for Ba-substituted samples with FM-PM transition temperature, T c, increasing from ~121 K (x = 0.1) to ~170 K (x = 0.3), while for x = 0, an antiferromagnetic to paramagnetic transition behavior with transition temperature, T N, ~170 K was observed. In addition, inverse susceptibility versus T plot showed a deviation from the Curie–Weiss behavior above T c, indicating the existence of the Griffiths phase with deviation temperature, T G, increasing from 160 K (x = 0.1) to 206 K (x = 0.3). Magnetoresistance, MR, behavior indicates intrinsic MR mechanism for x = 0.1 which changed to extrinsic MR for x > 0.2 as a result of Ba substitution. The weakening of charge ordering and inducement of ferromagnetic metallic (FMM) state as well as increase in both T c and T MI are suggested to be related to the increase of tolerance factor, τ, and increase of e g ?electron bandwidth as average ionic radius at A-site, <r A> increased with Ba substitution. The substitution may have reduced MnO6 octahedral distortion and changed the Mn–O–Mn angle which, in turn, promotes itinerancy of charge carrier and enhanced double exchange mechanism. On the other hand, increase in A-site disorder, which is indicated by the increase in σ 2 is suggested to be responsible for the widening of the difference between T c and T MI.  相似文献   

20.
We report the results of magnetic, magnetocaloric properties, and critical behavior investigation of the double-layered perovskite manganite La1.4(Sr0.95Ca0.05)1.6Mn2O7. The compounds exhibits a paramagnetic (PM) to ferromagnetic (FM) transition at the Curie temperature T C = 248 K, a Neel transition at T N = 180 K, and a spin glass behavior below 150 K. To probe the magnetic interactions responsible for the magnetic transitions, we performed a critical exponent analysis in the vicinity of the FM–PM transition range. Magnetic entropy change (??S M) was estimated from isothermal magnetization data. The critical exponents β and γ, determined by analyzing the Arrott plots, are found to be T C = 248 K, β = 0.594, γ = 1.048, and δ = 2.764. These values for the critical exponents are close to the mean-field values. In order to estimate the spontaneous magnetization M S(T) at a given temperature, we use a process based on the analysis, in the mean-field theory, of the magnetic entropy change (??S M) versus the magnetization data. An excellent agreement is found between the spontaneous magnetization determined from the entropy change [(??S M) vs. M 2] and the classical extrapolation from the Arrott curves (µ0H/M vs. M 2), thus confirming that the magnetic entropy is a valid approach to estimate the spontaneous magnetization in this system and in other compounds as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号