首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
粉末涂料固体润滑膜滚动/滑动复合干摩擦磨损特性研究   总被引:1,自引:1,他引:1  
在M-2000磨损试验机上考察了经过一次处理和经两次处理的40Cr钢环表面喷涂3种粉末涂料型固体润滑膜(P型、H型、E型)试样,在线载荷为104N/m、相对滑动速度为0.042 m/s、干摩擦滚动/滑动复合磨损条件下的摩擦磨损性能,通过扫描电子显微镜(SEM)对试样磨损表面以及磨屑进行了显微观察。结果表明:底材经过一次处理(化学底膜处理)的复合固体润滑膜试样,P型和E型在磨损后期的摩擦因数分别稳定在0.38和0.32,而H型在0.40左右跳动;P型和H型的涂层磨损脱落期为60 m in左右,E型为120 m in左右;质量磨损从小到大顺序为P型相似文献   

2.
采用UMT-2型球-盘摩擦磨损试验机研究溅射沉积MoS2/Sb2O3复合固体润滑膜的滑动摩擦磨损寿命,采用显微镜分析球-盘摩擦副在不同磨损阶段的磨损形貌与磨损状况,并对磨痕位置S、Mo元素进行XPS分析。结果表明:在摩擦磨损寿命试验过程中,摩擦副的接触方式最开始的点接触逐步过渡到面接触;MoS2固体润滑膜对滑动摩擦副的延寿作用是基底材料表面的有效厚度润滑膜及MoS2对摩擦偶件(钢球)的转移;机械磨损的剪切剥离效应是润滑失效的主要原因,MoS2的氧化在一定程度上加剧了润滑失效的进程。  相似文献   

3.
SDZH2—10阀门电动装置蜗轮蜗杆分别为ZCuAl9Fe4Ni4Mn2和40Cr,其传动比为70、载荷约为4137N、相对滑动速度为5.3m/s,接触应力大,摩擦时温度达300℃左右、油润滑失效,导致了齿轮表面磨损严重,需要采用固体润滑。采用磷化预处理来提高固体润滑膜和基体的结合力,同时加入钛酸钾晶须来提高膜的强度,3000C和5000C时,加钛酸钾晶须的耐磨寿命分别是未加钛酸钾晶须的2.4倍和3倍。磷化+钛酸钾晶须处理的固体润滑膜(称之为复合固体润滑膜)的耐磨寿命是未磷化处理的3倍,且摩擦系数值只有未磷化处理的1半以下,该复合固体润滑膜在载荷大、滑动速度高、摩擦温度高的极端摩擦状态下,能改善原有的蜗轮蜗杆传动中润滑状况,达到减磨的效果。  相似文献   

4.
在M-2000摩擦磨损试验机上研究了P涂层(聚酯树脂)、E涂层(环氧树脂)和P/E涂层3种粉末涂料型固体润滑膜摩擦磨损性能,并与溶剂粘结型固体润滑膜进行摩擦磨损试验对比。结果表明:粉末涂料型固体润滑膜摩擦磨损性能优于溶剂粘结型固体润滑膜;摩擦偶对相对滑动速度较大时,P涂层表现了极好的润滑耐磨性能,摩擦偶对相对滑动速度较小时,WE涂层表现较好的润滑耐磨性能。  相似文献   

5.
以常用精密二硫化钼固体润滑球轴承为研究对象,采用摆动试验装置,在真空环境中研究其在小角度往复运动工作模式下的摩擦力矩、磨损形貌、使用寿命。结果表明:在真空环境中小角度往复运动模式下,二硫化钼固体润滑轴承摩擦表面不能够形成有效的转移润滑膜,因而轴承摩擦力矩增大,滚道磨损严重,且在一定范围内摆动角度越小、摆动频率越高,轴承的摩擦力矩增加越大、滚道磨损越严重;工作在小角度往复摆动模式下二硫化钼固体润滑球轴承的运转寿命远小于同等接触应力条件下单向运转时的轴承运转寿命。  相似文献   

6.
超低温氢氧泵轴承技术研究及进展   总被引:3,自引:0,他引:3  
液氢/液氧火箭发动机涡轮泵用球轴承工作在超低温高转速重载荷条件下,需要采用合适的材料匹配和可靠的固体润滑。对由9Cr18套圈和政治协商会议组成的钢制轴承,常采用PTFE复合材料保持架及套圈和球上表面溅射PTFE膜层或PVD软金属膜来实现润滑,其主要失效可归纳为磨损、胶合及保持架断裂3种形式。采用氮化硅球的混合式陶瓷轴承以及套圈表面等离子体淹没离子注入Ag润滑膜层的应用,提高了轴承的寿命和可靠性。陶瓷轴承技术和离子改性技术将满足该轴承技术发展的需要。  相似文献   

7.
基于面接触的粉末润滑实验研究   总被引:2,自引:0,他引:2  
利用石墨粉末颗粒,基于端面摩擦试验机对粉末润滑方式开展了摩擦学研究。试验了粉末冶金铜合金材料、粘结石墨润滑涂层、PTFE 3层自润滑复合材料3种试样在石墨粉末颗粒流润滑条件下的摩擦因数、温度及表面膜等特性,并与干摩擦和油润滑进行了对比。结果表明:粉末润滑可以实现与固体润滑膜、自润滑材料类似的无油固体润滑效果;利用它的持续补充性,可以实现动态补充和修复的固体润滑膜;但是,粉末润滑膜与基体附着能力较差。  相似文献   

8.
《轴承》2016,(5)
为提高某高速电动机用转子轴承的自润滑性能,采用WS_2作为固体润滑材料,经工艺研究,制备了满足轴承使用要求的WS_2复合薄膜。通过对镀膜前后轴承的性能测试、试验以及与国外产品对比分析可知:采用WS_2复合薄膜后,轴承的摩擦力矩更小且更稳定,可直接在高速下运转,试验后轴承工作表面的固体润滑膜更加致密细腻;采用自润滑保持架与WS_2复合固体润滑膜相结合的润滑方案后,轴承的摩擦力矩与国外产品相比明显降低。  相似文献   

9.
利用低温离子渗硫技术在GCr15钢球表面形成渗硫层以提高其摩擦学性能。采用四球摩擦试验机,考察渗硫和未渗硫试样在干摩擦及油润滑条件的摩擦学性能。结果表明:在干摩擦和油润滑条件下渗硫试样的摩擦因数均远低于未渗硫试样;在干摩擦条件下,渗硫试样的磨损率相比未渗硫试样大幅下降,这主要归因于渗硫层良好的减摩抗磨作用;在油润滑条件下,因油润滑和渗硫层的固体润滑相互协调作用,渗硫试样的摩擦和磨损性能明显优于未渗硫试样,其磨损表面的痕迹浅而轻,磨损机制为轻微的磨粒磨损。  相似文献   

10.
塑性加工一般采用润滑油或固体润滑膜对工件进行润滑处理,干摩擦定律作为理解润滑条件下的摩擦行为的基础,可通过类金刚石镀膜镀层模具与板材进行侧拉摩擦试验和高面压摩擦试验来确定。对固体润滑膜下的摩擦定律进行了研究,最后基于干摩擦定律与侧拉摩擦试验,提出了油润滑条件下的摩擦定律。  相似文献   

11.
在硬质合金YT5表面利用微细电火花加工小孔,并装填MoS2固体润滑剂以改善基体表面的摩擦磨损性能.在UMT摩擦试验机上进行摩擦磨损试验,结果表明:装填固体润滑剂MoS2的微孔表面比光滑表面的摩擦系数显著降低,改善了摩擦表面磨损工况,表现出良好的减摩和润滑效果.结合SEM和EDX分析微孔固体润滑的机理:在摩擦过程中,存储于微孔中的固体润滑剂受到相对摩擦和挤压作用而粘着、拖覆在基体表面,形成一层固体润滑膜,从而起到减摩润滑作用.表面微孔润滑技术是提高基体表面摩擦磨损特性的有效方法,但需通过合理设计微孔结构尺寸,兼顾微孔表面的减摩润滑作用和基体的物理机械性能之间的平衡.  相似文献   

12.
《轴承》2015,(12)
通过粉末冶金方法制备含Fe S的铜基复合材料,采用M-200型摩擦磨损试验机,分别在干摩擦和浸油干摩擦条件下对其摩擦磨损性能进行检测。结果表明:Fe S/铜基复合材料在2种工况条件下均具有一定的减摩效果,并且随着Fe S含量的增多,摩擦副摩擦因数越来越小;在浸油干摩擦条件下,当Fe S含量较高时,润滑油与Fe S转移膜共同作用形成液-固润滑膜,边界润滑效果较好。  相似文献   

13.
为了改善笔头球座体表面耐磨性能,延长圆珠笔的使用寿命,采用扫描电子显微镜、X射线光电子能谱仪对易切削不锈钢线材制成的笔头球座体表面润滑膜进行表征,并通过圆珠笔书写润滑度测试仪和书写划圆仪对比球座体表面润滑膜在真空环境下被高温分解前后的书写效果。结果表明:圆珠笔笔头球座体表面存在一层约500 nm厚的润滑膜,该润滑膜是在切削油辅助下加工易切削不锈钢金属笔头时,通过化学吸附效应吸附于球座体表面的,主要由烃基羧酸或者烃基醇等亲水性物质构成;球珠和球座体之间是边界润滑状态,球座体表面润滑膜的存在降低了笔头的摩擦和磨损,与不含润滑膜的结果相比,其摩擦因数降低了32%,磨损量降低了77%;不含润滑膜的笔头制成的笔芯线迹呈现规律性色淡、出墨量持续降低,笔芯滑动600 m时因磨损较大完全失效,而含润滑膜的笔头制成的笔芯线迹饱满清晰,出墨量波动较小。润滑膜表面亲水性物质可以提高球座体与书写介质的润湿性,进而实现圆珠笔的长效润滑,降低球座体表面磨损。  相似文献   

14.
Ag膜在干摩擦、油和脂润滑下的摩擦学性能研究   总被引:1,自引:0,他引:1  
精密运转部件表面沉积一层软金属银和银基固体薄膜可以有效地降低摩擦、减小磨损。通过钢球/镀Ag膜摩擦盘在干摩擦、4122油和L252脂润滑条件下的球-盘摩擦学试验,研究Ag膜在油和脂复合润滑下的摩擦学性能,分析润滑条件、载荷、速度对Ag膜摩擦因数的影响。试验结果表明:在4 N法向载荷和油、脂润滑下,与干摩擦相比,镀Ag膜摩擦副的最大静摩擦因数分别减小了10.7%和6.1%;在0~2 000 r/min转速范围内,Ag膜摩擦因数随转速增加而减小,与干摩擦相比,油润滑下Ag膜摩擦因数减小9%~48%,脂润滑下Ag膜摩擦因数减小17%~52%。Ag膜在干摩擦、4122润滑油和L252润滑脂复合润滑下,摩擦因数均随载荷增加而降低;Ag膜摩擦副/钢球在油、脂复合润滑下启动摩擦力矩小,摩擦副在宽转速范围内摩擦因数变化小,运转平稳。  相似文献   

15.
GCr15钢微织构表面固体润滑性能研究   总被引:2,自引:0,他引:2  
为研究不同表面处理方式对PTFE/GCr15钢配副表面摩擦学性能的影响,采用Nd:YAG纳秒激光器对GCr15轴承钢下试样表面进行激光织构加工,并以纳米MoS_2固体润滑剂作为润滑介质,以黏结有PTFE自润滑衬垫的圆柱销作为上试样进行对摩试验。研究发现:PTFE自润滑衬垫与微织构GCr15摩擦副在干摩擦条件下摩擦因数较低,仅为0.137,而在纳米MoS_2固体润滑剂润滑条件下,其摩擦因数进一步下降为0.123,且波动较小。通过EDS分析表明,表面微织构、聚四氟乙烯衬垫与纳米MoS_2润滑介质三者具有协同润滑减摩效应,可摩擦副表面生成一层由PTFE与纳米MoS_2材料组成的致密、平滑复合润滑膜,有效改善对摩副之间的润滑特性。研究表明,通过表面激光织构技术与固体自润滑技术(添加纳米MoS_2)的有效集成融合,可进一步改善PTFE/GCr15钢配副的润滑性能。  相似文献   

16.
激光微造型表面固体润滑性能研究   总被引:1,自引:0,他引:1  
采用声光调Q二极管泵浦固体光源(DPSS)Nd:YAG激光器,在45#钢试样表面进行表面微造型加工。以聚酰亚胺(PI)和二硫化钼(MoS2)复合固体润滑材料作为固体润滑剂,通过两步加温固化黏结工艺成功制备微造型固体润滑试样。在MMW-1A型摩擦磨损试验机上进行光滑无润滑试样、光滑表面固体润滑试样和微造型固体润滑试样的摩擦性能对比试验,以及微造型固体润滑试样在不同转速和压力下的摩擦性能试验。结果表明,在经过激光加工的微凹坑中填充复合固体润滑材料的试样,在摩擦过程中微凹坑中填充的固体润滑材料能有效转移到在摩擦表面,补充消耗掉的润滑材料,因而表现出更好的摩擦学性能。  相似文献   

17.
在试件表面激光加工表面织构,采用喷涂法制备二硫化钼固体润滑膜,在环块摩擦磨损试验机上研究沟槽型表面织构对二硫化钼固体润滑膜的摩擦学性能的影响。结果表明,在一定的工况条件下,就固体润滑膜的寿命而言,微沟槽的几何参数存在最优值。分析发现,织构可以储存固体润滑剂,在一定的工况条件下,会使得织构内的固体润滑剂被挤出,不断地补充摩擦接触面间的固体润滑剂,使得固体润滑膜的寿命延长。  相似文献   

18.
采用非平衡磁控溅射法在9Cr18轴承钢基底上制备了厚度约3μm的MoS2/Ti复合固体润滑膜,基于球形压头纳米压痕试验,采用连续刚度法对MoS2/Ti复合固体润滑膜的力学性能进行研究,探究MoS2/Ti复合固体润滑膜力学性能随压痕深度的变化规律;根据压痕试验载荷-位移曲线,采用Hertz接触理论计算MoS2/Ti复合固体润滑膜的弹性模量并与试验结果进行对比;利用CSM摩擦试验机对低速、低载下MoS2/Ti复合固体润滑膜的摩擦特性进行研究;基于压痕试验提出了一种能够更准确计算钢球加载时MoS2/Ti复合固体润滑膜接触应力的方法,并计算了摩擦试验不同载荷下的接触应力。结果表明:MoS2/Ti复合固体润滑膜的力学性能和摩擦特性都会受到表面形貌的影响;除表面初始压入阶段外,MoS2/Ti复合固体润滑膜的弹性模量和接触刚度都随着压痕深度的增大而增大;滑动速度和载荷共同影响MoS2/Ti复合固体润滑膜的摩擦特性。  相似文献   

19.
在试件表面激光加工表面织构,采用喷涂法制备二硫化钼固体润滑膜,在环块摩擦磨损试验机上研究沟槽型表面织构对二硫化钼固体润滑膜的摩擦学性能的影响。结果表明,在一定的工况条件下,就固体润滑膜的寿命而言,微沟槽的几何参数存在最优值。分析发现,织构可以储存固体润滑剂,在一定的工况条件下,会使得织构内的固体润滑剂被挤出,不断地补充摩擦接触面间的固体润滑剂,使得固体润滑膜的寿命延长。  相似文献   

20.
为提高钨钢材料零部件的减摩抗磨性能,参照鱼鳞表面结构并结合有限元模拟仿生设计槽宽约0.6 mm钨钢试样;制备具有最佳配比的Sn-Al2O3复合固体润滑剂,利用高温熔渗将其填充于仿生鱼鳞状表面织构以制备Sn-Al2O3复合固体润滑剂填充钨钢织构试样,并在不同载荷-滑动频率下研究试样的摩擦学性能。结果表明:相比30 N-2 Hz、25 N-3 Hz、15 N-5 Hz和10 N-6 Hz工况,在20 N-4 Hz工况下试样具有最低的平均摩擦因数和磨损率。这是因为在相对较低的载荷和相对较高的滑动频率下,循环应力和摩擦热使塑性变形状态的固体润滑剂更易从织构中挤出而迁移到摩擦表面,形成完整的润滑膜,能够有效地提高试样的减摩抗磨性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号