首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The oxygen solutions in Fe-Ni melts containing chromium, manganese, vanadium, carbon, silicon, titanium, or aluminum are studied thermodynamically. The equilibrium constants of the deoxidation of the melts by these elements are determined, and the activity coefficients for infinite dilution and the interaction parameters in alloys of various compositions are found. The oxygen solubilities in the alloys are calculated as a function of the nickel and deoxidizer contents. The deoxidizer contents at the minima in the oxygen solubility curves for the melts are determined, and the corresponding minimum oxygen concentrations are calculated. As the nickel content in the system increases, the deoxidizing capacities of chromium, manganese, and silicon are shown to increase substantially, and the deoxidizing capacity of carbon increases most strongly. As the nickel content in the melt increases, the deoxidizing capacities of vanadium and titanium first decrease insignificantly and then increase substantially. As the nickel content in the melt increases to 50%, the deoxidizing capacity of aluminum first decreases and then increases; in pure nickel, it is identical to that in pure iron.  相似文献   

2.
Thermodynamics of the oxygen solutions in Fe-Ni-Ti melts   总被引:1,自引:1,他引:0  
The oxygen solutions in Fe-Ni melts containing up to 3% titanium are analyzed thermodynamically. The results of the works that determined the fields of the oxide phases in iron and nickel deoxidized by titanium are generalized. The proposed calculation model is shown to adequately describe the titanium deoxidation of iron-nickel alloys. The deoxidizing capacity of titanium decreases as the nickel content in the melt increases to 40% and, then, increases sharply as the nickel content increases further. The oxygen solubility curves pass through a minimum, whose position changes from 0.5644% Ti for pure iron to 0.6332% Ti for pure nickel. The points of equilibrium between the TiO2, Ti3O5, and Ti2O3 oxide phases are determined for six alloy compositions at 1873 K. The titanium deoxidation of Fe-40% Ni melts is experimentally studied, and the calculated and experimental results are in good agreement.  相似文献   

3.
Oxygen solutions in Fe-Mn melts are analyzed thermodynamically. The composition of the oxide phase is determined, and the equilibrium oxygen concentrations in Fe-Mn melts are calculated over a wide composition range. The oxide phase mainly contains MnO: even at a molar fraction of manganese of 0.02 in the melt, the molar fraction of manganese oxide in the slag is more than 0.9. This is due to a much higher oxygen affinity of manganese as compared to iron; that is, manganese additives to iron considerably decrease the oxygen solubility. When the manganse content in the melt is 19.32%, the oxygen solubility curve has a minimum corresponding to an oxygen concentration of 5.136 × 10?3%. However, a further increase in the managanese content results in an increase in the oxygen concentration in the melt. In liquid manganese, the oxygen saturation concentration at 1873 K is 0.0472%. The interaction parameter e o(Mn) o (?0.207) and the activity coefficient γ o(Mn) o (1.131 × 10?4) have been calculated for the first time.  相似文献   

4.
Thermodynamics of oxygen solutions in Fe-Ni-V melts   总被引:1,自引:1,他引:0  
The oxygen solutions in Fe-Ni melts with up to 5% V are analyzed thermodynamically. The results of the works in which the fields of the vanadium-deoxidized oxide phases in iron and nickel were determined are generalized. The thermodynamic model developed for the calculation of the deoxidation of iron-nickel alloys with vanadium is shown to be adequate. The deoxidizing capacity of vanadium decreases insignificantly as the nickel content in the melt increases to 20% and increases substantially as the nickel content increases further. The oxygen solubility curves pass through a minimum, whose position changes from 2.3192% V for pure iron to 0.7669% V for pure nickel. We determined the equilibrium point [V]* between the (Fe, Ni)V2O4 and V2O3 oxide phases for alloys of six compositions at 1873 K. In nickel, [V]* is almost 200 times lower than in iron. The deoxidation of the Fe-40% Ni melt with vanadium is studied experimentally, and the experimental results agree satisfactorily with the calculated data.  相似文献   

5.
Thermodynamic analysis of aluminum-containing Fe-Co melts is performed. The equilibrium constants of the deoxidation of iron-cobalt melts with aluminum, the activity coefficients during infinite dilution, and the interaction parameters in melts with various compositions are determined. The oxygen solubility in the melts under study is studied as a function of the cobalt and aluminum contents. Aluminum is characterized by a very high affinity to oxygen in iron-cobalt melts. The deoxidizing capacity of aluminum substantially increases with the cobalt content in the melt. The curves of the oxygen solubility in aluminum-containing iron-cobalt melts have a minimum, whose position shifts to lower aluminum contents as the cobalt content in the melt increases. Further aluminum additions increase the oxygen concentration in the melt: the higher the cobalt content in the melt, the sharper the increase in the oxygen concentration after the minimum when aluminum is added to the melt. The aluminum contents at the minimum points in the oxygen solubility curves are determined, and the corresponding minimum oxygen concentrations are found.  相似文献   

6.
Thermodynamic analysis of the oxygen solutions in manganese-containing Fe-Co melts has been performed. The equilibrium constants of deoxidation reaction of iron-cobalt melts with manganese, the activity coefficients during infinity dilution, and the interaction parameters in various melts are found. During the deoxidation of manganese-containing Fe-Co melts, the oxide phase contains FeO and CoO along with MnO. The compositions of the oxide phase above Fe-Co-Mn-O melts are calculated. When the cobalt and manganese contents in the melts increase, the mole fraction of manganese oxide increases, and it approaches 1 in the case of pure cobalt. The dependences of the oxygen solubility in the melts on the cobalt and manganese contents are calculated. The deoxidizing capacity of manganese increases substantially with increasing cobalt content in the melt. The curves of oxygen solubility in Fe-Co melts have minima, whose values shift toward low manganese content in a melt. The manganese contents are determined at the minimum points in the oxygen solubility curves, and the corresponding minimum oxygen contents are found.  相似文献   

7.
A thermodynamic analysis is performed for the oxygen solutions in niobium-containing Fe-Ni melts. The deoxidizing capacity of niobium in iron??nickel melts is shown to be low. It decreases slightly as the nickel content in a melt increases to 40% and then increases insignificantly as the nickel content increases to 60%; a further increase in the nickel content leads to a marked increase in the deoxidizing capacity. The solubility curves of oxygen in iron??nickel melts passes through a minimum, whose position shifts toward higher niobium concentrations with increasing nickel content. Subsequent niobium additions increase the oxygen concentration in the melt. The equilibrium constants of the reactions of niobium deoxidizing of iron??nickel melts, the activity coefficients, and the interaction parameters characterizing Fe-Ni-Nb-O melts are determined.  相似文献   

8.
The thermodynamics of carbon and oxygen solutions in manganese melts is studied. An equation for the temperature dependence of the activity coefficient of carbon in liquid manganese is obtained (γ C(Mn) 0 = ?1.5966 + (1.0735 × 10?3)T). The temperature dependence of the Gibbs energy of the reaction of carbon dissolved in liquid manganese with the oxygen of manganese oxide is shown to be described by the equation ΔG T 0 = 375264 ? 184.66T(J/mol). This reaction can noticeably be developed depending on the carbon content at temperatures of 1700–1800°C. The deoxidation ability of carbon in manganese melts is shown to be much lower than that in iron and nickel melts due to the higher affinity of manganese to both oxygen and carbon. Although the deoxidation ability of carbon in manganese melts increases with temperature, the process develops at rather high carbon contents in all cases.  相似文献   

9.
The solubility of oxygen in niobium-bearing iron-nickel melts is studied experimentally, for the example of Fe-40% Ni alloy at 1823 K. Niobium reduces the solubility of oxygen in this melt. Values are determined for the equilibrium constant of the reaction between niobium and oxygen dissolved in the given melt (logK (1)(Fe-40% Ni) = ?4.619), the Gibbs energy (ΔG (1)(Fe-40%Ni) o = 161210 J/mol), and the interaction parameters (e Nb(Fe-40% Ni) O = ?0.630; e O(Fe-40% Ni) Nb = ?0.105; e Nb(Fe-40% Ni) Nb = 0.010). Over a wide range of concentrations, the Gibbs energy of the reaction between niobium and oxygen dissolved in Fe-Ni melts, the equilibrium constants, and the interaction parameters at 1823 K are determined. The solubility of oxygen in Fe-Ni melts of different composition containing niobium is determined at 1823 K. With increase in nickel content in the Fe-Ni melts, the oxygen affinity of niobium increases significantly, on account of the decrease in oxygen binding forces with increase in nickel content in the melt (γ O(Fe) ° = 0.0084, γ O(Ni) ° = 0.297).  相似文献   

10.
Thermodynamic analysis of the complex reduction of metal melts is considered. The proposed analytical method identifies the influence of the weaker reducing agent in amplifying the effect of the stronger reagent. The curves of oxygen solubility pass through a minimum. Analysis of the extremal curves of oxygen concentration in the melt as a function of the content of reducing agents yields a formula for the content of the stronger reducing agent such that the oxygen concentration is minimal. Thermodynamic analysis of the combined influence of aluminum and silicon on the oxygen solubility in Fe-Co melts indicates that the reaction products may contain both mullite (3Al2O3 · 2SiO2) and kyanite (Al2O3 · SiO2). The presence of silicon in the melt intensifies the reducing action of aluminum: slightly when mullite is formed and significantly when kyanite is formed. When kyanite is formed, the curves of oxygen solubility pass through a minimum, whose position depends on the aluminum content in the melt but not on the silicon content. The aluminum content at the minimum declines slightly from iron to cobalt, as for Fe-Co-Al systems. Further addition of aluminum elevates the oxygen concentration. The formation of the compounds Al2O3, 3Al2O3 · 2SiO2, Al2O3 · SiO2, and SiO2 is investigated as a function of the Al and Si content in the melt.  相似文献   

11.
Thermodynamic analysis of oxygen solutions in nickel melt shows that, as aluminum and titanium are added to the melt, the solubility of oxygen decreases. However, after reaching 0.205% Al and 0.565% Ti, the oxygen concentration in the melt begins to rise with increase in the Al and Ti content. The minimum oxygen concentrations in the reduction of nickel melt by aluminum (1.44 × 10–4% O) and titanium (2.98 × 10–4% O) are determined. On that basis, we may propose the optimal approach to alloying nickel melts with aluminum and titanium. First, the melt is reduced by adding sufficient aluminum to minimize the oxygen concentration in the melt (~0.2% Al). Then the oxide formed is removed, so as to prevent repeated oxidation of the melt. Finally, the melt is alloyed with aluminum and titanium to obtain the required alloy composition.  相似文献   

12.
13.
14.
A Knudsen cell-mass spectrometer combination was used to determine the activities of iron and nickel in solid and liquid iron-nickel alloys in the temperature range 1500 to 1900 K. This has provided thermodynamic data which are consistent in both the solid and liquid regions. The δHM@#@ values obtained are in fair agreement with calorimetric data. A subregular model gives a good representation of the thermodynamic properties of this system.  相似文献   

15.
A Knudsen cell-mass spectrometer combination was used to determine the activities of iron and nickel in solid and liquid iron-nickel alloys in the temperature range 1500 to 1900 K. This has provided thermodynamic data which are consistent in both the solid and liquid regions. The δHM@#@ values obtained are in fair agreement with calorimetric data. A subregular model gives a good representation of the thermodynamic properties of this system.  相似文献   

16.
17.
18.
Abstract

Activities of PbO in PbO-PbF2 and PbO-PbF2-SiO2 melts were determined in the temperature range 1050–1250K using a galvanic cell incorporating a calcia-stabilized zirconia solid electrolyte. Compositions investigated included slag mixtures containing up to 30 mole % PbF2 for the PbO-PbF2 binary, and up to 20 mole % PbF2 for the PbO-PbF2-SiO2 ternary. Results for the binary were in agreement with previously published values. An electron microprobe was used to examine for slag-electrolyte interactions, and necessary restrictions on run times and temperatures were noted. For melts in which the mole fraction of silica exceeded about 0.2, the activity of PbO was raised by the addition of PbF2; the reverse was true at lower silica contents. The results are discussed with reference to the anionic constitution of the melts described in terms of O2? and F? ions and an array of silicate and silico-fluoride ions the chain members of which have the general formula SinO3n+1?m Fm(2n+2?m)?, where 1 ≤ n ≤ ∞ and 0 ≤ m ≤ 2n+2.

Résumé

Les activités de PbO dans les mélanges fondus PbO-PbF2 et PbO-PbF2-SiO2 ont été déterminées entre 1050 et 1250 K par une cellule galvanique comprenant un électrolyte solide de zircone stabilisée avec CaO. Les compositions investiguées des mélanges de scories contiennent au moins 300% molaire de PbF2 pour le binaire PbO-PbF2 et au moins 200% molaire pour le ternaire PbO-PbF2-SiO2. Les résultats pour le système binaire sont en accord avec les valeurs déjà publiées. Dne microsonde a été utilisée pour examiner les interactions scories-électrolyte et d'évidentes restrictions de temps et de températures ont été notées. Pour les mélanges contenant plus de 20% molaire de silice, l'activite de PbO a augmenté avec l'addition de PbF2 alors que l'effet inverse a été noté lorsque les quantités de silice étaient inferieures à 0.2. Les résultats ont été interprétés en se reférant à la constitution anionique des mélanges fondus décrite de la façon suivante: des ions O2? et F? et un arrangement de silicates et de silicates fluorés dont la chaîne a comme formule SinO3n+1?m Fm(2n+ 2?m)?, où 1≤ n ≤ ∞ et O≤ m ≤ 2n+2.  相似文献   

19.
Iron-nickel alloys with 8 and 16 wt pct nickel and iron-chromium-nickel alloys with 8 pct nickel and chromium contents in the range of 2 to 22 pct were equilibrated with iron and nickel in flowing CH4-H2 gas mixtures and in sealed capsules under partial vacuum at temperatures between 700 and 1060°C. Carbon activities in these alloys were established from the carbon concentrations in the nickel by applying Henry’s law to the solubility of carbon in nickel that was determined in the temperature range of 500 to 1000°C. First-order free-energy interaction parameters were used to relate the carbon activities to composition and temperature in the single-phase austenitic Fe-Ni and Fe-Cr-Ni alloys. An expression was also developed to evaluate carbon activities in Fe-Cr-Ni alloys in the region of higher chromium contents (〉4 wt pct) that result in a two-phase austenite plus carbide mixture at these temperatures.  相似文献   

20.
Iron and nickel Versatic solutions were prepared by solvent extraction with 33% Versatic 10 in Escaid 110. Mixed iron-nickel Versatic solutions with different iron:nickel ratios were prepared by mixing single metal solutions. The infrared spectra of the single metal and mixed metal Versatic solutions were recorded at 25 and 160°C. Iron Versatic showed absorption bands at 1685, 1575 and 1418 cm?1, probably due to solvating acid, bidentate chelation and bidentate bridging, respectively. Nickel Versatic absorbed at 1665 and 1590 cm?1; the 1590 cm?1 band has been assigned to monodentate coordination. All mixed iron-nickel solutions showed absorption bands at 1610 and 1585 cm?1. The relative intensities of the bands changed with solution composition, but not the frequencies. The mixtures showed none of the absorption bands of iron-only or nickel-only Versatic solutions; thus all the metal ions in solution are assumed to be present as mixed complexes. The average Versatic to total metal charge ratio in the complexes at 160°C was 1.1–1.3 for relatively high metal concentrations.Thin layer chromatography tests were carried out at 25°C; the retention factors of all mixed iron-nickel solutions were the same, and different from those of iron-only or nickel-only Versatic. This gives further evidence for the existence of mixed-metal complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号