首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Tungsten trioxide nanorods have been generated by the thermal decomposition (450 °C) of tetrabutylammonium decatungstate. The synthesized tungsten trioxide (WO3) nanorods have been characterized by XRD, Raman, SEM, TEM, HRTEM and cyclic voltammetry. High resolution transmission electron microscopy and X-ray diffraction analysis showed that the synthesized WO3 nanorods are crystalline in nature with monoclinic structure. The electrochemical experiments showed that they constitute a better electrocatalytic system for hydrogen evolution reaction in acid medium compared to their bulk counterpart.  相似文献   

2.
Co3O4 nanorods have been successfully synthesized by thermal decomposition of the precursor prepared via a facile and efficient microwave-assisted hydrothermal method, using cetyltrimethylammonium bromide (CTAB) with ordered chain structures as soft template for the first time. The obtained Co3O4 was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The results demonstrate that the as-synthesized nanorods are single crystalline with an average diameter of about 20 to 50 nm and length up to several micrometers. Preliminary electrochemical studies, including cyclic voltammetry (CV), galvanostatic charge–discharge, and electrochemical impedance spectroscopy (EIS) measurements, are carried out in 6 M KOH electrolyte. Specific capacitance of 456 F g−1 for a single electrode could be achieved even after 500 cycles, suggesting its potential application in electrochemical capacitors. This promising method could provide a universal green chemistry approach to synthesize other low-cost and environmentally friendly transition metal hydroxide or oxide.  相似文献   

3.
Spinel zinc manganese oxide (ZnMn2O4) nanorods were successfully prepared using the previously synthesized α-MnO2 nanorods by a hydrothermal method as template. The nanorods were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-Vis absorption, X-ray photoelectron spectroscopy, surface photovoltage spectroscopy, and Fourier transform infrared spectroscopy. The ZnMn2O4 nanorods in well-formed crystallinity and phase purity appeared with the width in 50-100 nm and the length in 1.5-2 μm. They exhibited strong absorption below 500 nm with the threshold edges around 700 nm. A significant photovoltage response in the region below 400 nm could be observed for the nanorods calcined at 650 and 800°C.  相似文献   

4.
Cadmium selenide (CdSe) nanoparticles were synthesized through colloidal method in aqueous medium using the reaction intermediates selenium nanorods as selenium source. Trigonal selenium nanorods (t-Se) were synthesized in water by the reduction method in the presence of sodium borohydride at 60?°C using sodium selenite (Na2SeO3) as selenium source. These selenium nanorods were further utilized to synthesis cadmium selenide nanoparticles at 100?°C in water. The synthesized nanorods and nanoparticles were characterized using XRD, SEM, TEM and XPS analysis. X-ray diffraction (XRD) analysis shown that the nanorods possess trigonal phase while the nanoparticles possess a cubic zinc blende structure. Scanning electron microscope (SEM) analysis of the prepared hexagonal shaped nanorods reveals the diameter of the nanorods are about 150 nm. Transmission electron microscopy (TEM) analysis shows the size of the synthesized CdSe nanoparticles are about 4–8 nm. X-ray photoelectron spectroscopy (XPS) analysis illustrates the presence of respective elements Cd, Se with its corresponding oxidation states. The activity of nano selenium rods in aqueous solution during the conversion of cadmium selenide nanoparticles was discussed.  相似文献   

5.
《Ceramics International》2021,47(24):34297-34306
Electrochromic devices (ECDs) have the ability to block the heat generated by sunlight, making them ideal for use in smart windows. Herein, we report the fabrication of ECDs using MoSe2/WO3 (MSW) as the electrochromic material, for smart windows applications. A solvothermal method was used for the synthesis of MoSe2, while WO3 was synthesized using a sol-gel approach. Subsequently, MoSe2/WO3 (MSW) hybrids with different wt% of MoSe2 (0.05 wt%, 0.2 wt%, 0.5 wt%) were synthesized using an ultra-sonication approach. The physicochemical features of these MSW hybrids herein termed as MSW 0.05, MSW 0.2 and MSW 0.5, were investigated using X-ray diffraction (XRD), X-ray photon electron spectroscopic (XPS), scanning electron microscope (SEM), and EDS techniques and compared with pristine MoSe2 and WO3. The ECDs synthesized using MSW 0.05 showed increased coloration efficiency (62 cm2 C-1) with an applied potential range of 0 to −1.5 V. Subsequently, the ECDs based on indium tin oxide (ITO) and MSW 0.05 demonstrated excellent electrochromic performance and stability for 10,000 cycles. The enhanced electrochromic performance of the MSW-based ECDs may be attributed to the conductive nature as well as the synergistic effects between MoSe2 and WO3 when compared to the WO3-based ECDs. The synthesized MSW also showed promise as an electrochromic material in flexible ECDs for smart windows applications.  相似文献   

6.
PbS crystals were hydrothermally synthesized using Pb(NO3)2, l-cysteine, and N-cetyl pyridinium chloride in solutions with different pH values at 140 °C. Flower-like, granular and truncated cubic PbS crystals composing of Pb and S were detected using an X-ray diffractometer (XRD), a scanning electron microscope (SEM), a transmission electron microscope (TEM), a selected area electron diffraction (SAED) technique and an energy dispersive X-ray (EDX) analyzer. In addition, a Raman spectrometer revealed the presence of the first and second overtone modes at 436 and 602 cm−1, respectively. Emission spectra of the products were detected at 412 nm using a photoluminescence (PL) spectrometer.  相似文献   

7.
By regulating the pH values of the reaction solution, the boehmite (γ-AlOOH) nanowires and nanoflakes were successfully synthesized with a simple hydrothermal route using anhydrous AlCl3, NaOH and NH3·H2O as starting materials. Crystalline γ-Al2O3 nanowires with diameter of 10–30 nm and length of several hundreds of nanometer have been prepared by thermal decomposition of γ-AlOOH precursor. X-ray diffraction (XRD), transmission electron microscope (TEM), selected area electron diffraction (SAED), and high resolution transmission electron microscope (HRTEM) were used to characterize morphology and structure feathers of the synthesized samples. The pH values of the solution play important roles in the formation of γ-AlOOH nanowires. After calcinated at 500 °C for 2 h, the obtained γ-Al2O3 with a linear structure is similar to the γ-AlOOH precursor.  相似文献   

8.
Tungsten oxide (WO3) nanoplates were synthesized by a 270 W microwave-hydrothermal reaction of Na2WO4·2H2O and citric acid (C6H8O7·H2O) in deionized water. X-ray diffraction (XRD), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to reveal the synthesis of WO3 complete rectangular nanoplates in the solution of 0.2 g citric acid for 180 min, with O-W-O FTIR stretching modes at 819 and 741 cm−1, and two prominent O-W-O Raman stretching modes at 804 and 713 cm−1. The 2.71 eV indirect energy gap, and 430-460 nm blue emission wavelength range of WO3 complete rectangular nanoplates were determined using UV-visible and photoluminescence (PL) spectrometers. The formation mechanism was also proposed according to the experimental results.  相似文献   

9.
The 0D-1D Lithium titanate (Li4Ti5O12) heterogeneous nanostructures were synthesized through the solvothermal reaction using lithium hydroxide monohydrate (Li(OH)·H2O) and protonated trititanate (H2Ti3O7) nanowires as the templates in an ethanol/water mixed solvent with subsequent heat treatment. A scanning electron microscope (SEM) and a high resolution transmission electron microscope (HRTEM) were used to reveal that the Li4Ti5O12 powders had 0D-1D heterogeneous nanostructures with nanoparticles (0D) on the surface of wires (1D). The composition of the mixed solvents and the volume ratio of ethanol modulated the primary particle size of the Li4Ti5O12 nanoparticles. The Li4Ti5O12 heterogeneous nanostructures exhibited good capacity retention of 125 mAh/g after 500 cycles at 1C and a superior high-rate performance of 114 mAh/g at 20C.  相似文献   

10.
Pt3Te/C nanoparticles supported on Vulcan XC-72 carbon were prepared within a few minutes under different reaction conditions by using a microwave-polyol method. Their physical and electrochemical characterization were carried out by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectrometer (XPS), selected-area electron diffraction (SAED), H2 adsorption-desorption, ethanol oxidation and CO stripping. TEM shows that the Pt3Te/C (pH 3) catalyst has uniform nanoparticles and is well dispersed with average particle size of about 2.8 nm. Electrochemical results show that the electrochemical activity of Pt3Te/C catalysts synthesized at different pH values are in the order of pH 3 > pH 7 > pH 9 > pH 13. The Pt3Te/C catalyst (pH 3) is also better than the Pt3Te/C catalyst synthesized by formic acid as reductant. From a practical point of view, the microwave-polyol method at the pH value of 3 could be an appropriate method for synthesizing nanocatalysts.  相似文献   

11.
《Ceramics International》2016,42(5):6282-6287
Chrysanthemum-like hierarchical anatase TiO2 nanostructures self-assembled by nanorods have been successfully fabricated by a simple solvothermal route without using template materials or structure-directing additives. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), Raman spectrometer system (Raman), UV–vis absorption spectroscopy (UV–vis) and N2 adsorption–desorption measurement. The results indicate that synthesized chrysanthemum-like hierarchical anatase TiO2 nanostructures have a spherical shape with an average diameter of 1.5 μm and they are composed of nanorods with a width of about 30 nm and a length of about 300 nm. The pore distribution of the sample exhibits two kinds of pores. Such mesoporous structure of the sample might be extremely useful in photocatalysis because they possess efficient transport pathways to the interior and supplies higher specific area for more pollutant molecules to be absorbed. In addition, the synthesized TiO2 nanostructures show enhanced photocatalytic activity compared with commercial P25 for the degradation of RhB under UV light irradiation, which can be attributed to their special hierarchical structure and high light-harvesting capacity.  相似文献   

12.
《Ceramics International》2017,43(4):3784-3791
Nanometric and sub-micrometric monodispersed hydroxyapatite (HAp) particles with different morphologies (spheres and rods) were synthesized via a simple solvothermal method using Ca(NO3)2·4H2O and P2O5 as starting materials without any requirement to use organic templates. The growth, evolution and purity of the nanoparticles were investigated by controlling the synthesis conditions, including the alkalinity and the temperature of the solvothermal treatment. The increasing of the alkaline ratio results in a great change of the elaborated particles’ morphology that evolved from anisotropic forms (nanorods, sub-micrometric rod) at pH 9, short rod particles at pH 9.5 to spherical ones at higher pH (pH≥10).Powder X-Ray diffractometry (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and Nitrogen adsorption and desorption studies (BET) were used to characterize the structure and composition of the as-prepared samples.The thermal analysis of the synthesized particles conducted by differential scanning calorimetry (DSC) shows a good stability for all morphologies with a degradation temperature reaching 1300 °C.  相似文献   

13.
Zn-doped In2O3 composite nanoparticles were synthesized by precipitation/hydrothermal processing in the pH range of 5–11 and at the reaction temperature of 180 °C. The precursor solution used to prepare these nanoparticles was composed of In(NO3)3 and ZnSO4·7H2O, mixed at the In:Zn atomic ratios of 1:1, 1.5:1, and 2.5:1. The effects of In:Zn atomic ratio and pH on the morphology and phase composition of the composite nanoparticles were investigated in detail using a scanning electron microscope (SEM), a transmission electron micrograph (TEM), and an X-ray diffraction (XRD) system. The obtained results show that under alkaline conditions (pH 9–11), the nanoparticles exhibit cubic morphology. However, at pH 7, the morphology is sheet-like. Based on XRD analyses, the Zn content in hydrothermally processed nanoparticles is highest when the pH of the precursor solution is 7. Assessments of sintering behavior demonstrate that the IZO ceramic targets sintered at 1550 °C for 20 h are composed of In2O3 and Zn3In2O6 phases, with uniform grain morphology and size distribution.  相似文献   

14.
PbWO4 was prepared from Na2WO4·2H2O and Pb(OAc)2·3H2O in a solution containing a cationic surfactant (N-cetyl pyridinium chloride) using the sonochemical process (ultrasonic irradiation). The product morphologies, characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), were controlled by the surfactant, pH values and ultrasonic irradiation times. X-ray diffraction (XRD) and selected area electron diffraction (SAED) studies revealed diffraction patterns in good agreement with the simulation model, along with Fourier transform infrared (FTIR) and Raman analyses showed a W–O stretching band consistent with tetragonal PbWO4. Photoluminescent properties of the pine tree shaped products were also investigated.  相似文献   

15.
In this work we present the results on formation of ZnO nanorods prepared by spray of aqueous solutions containing ZnCl2 and thiocarbamide (tu) at different molar ratios. It has been observed that addition of thiocarbamide into the spray solution has great impact on the size, shape and phase composition of the ZnO crystals. Obtained layers were characterized by scanning electron microscopy (SEM) equipped with energy selected backscattered electron detection system (ESB), X-ray diffraction (XRD) and photoluminescence spectroscopy (PL). Small addition of thiocarbamide into ZnCl2 solution (ZnCl2:tu = 1:0.25) supports development of significantly thinner ZnO nanorods with higher aspect ratio compared to those obtained from ZnCl2 solution. Diameter of ZnO rods decreases from 270 to 100 nm and aspect ratio increases from ∼2.5 to 12 spraying ZnCl2 and ZnCl2:tu solutions, respectively. According to XRD, well crystallized (002) orientated pure wurtzite ZnO crystals have been formed. However, tiny ‘spot’—like formations of ZnS were detected on the side planes of hexagonal rods prepared from the thiocarbamide containing solutions. Being adsorbed on the side facets of the crystals ZnS inhibits width growth and promotes longitudinal c-axis growth.  相似文献   

16.
Tungsten trioxide (WO3) thin films were prepared incorporating various organic acid additives by the sol-gel spin coating technique. They were characterized by X-ray diffraction (XRD), UV-Visible analysis, scanning electron microscopy (SEM) and dc electrical conductivity. From XRD, the crystal phase, average grain size and structural parameters of WO3 thin films were found to vary owing to different water dissolved organic acid additives. The variation of optical conductivity and band gap energy was calculated from the UV-Visible analysis. The SEM studies revealed that the organic acids influenced the surface morphology of the microsized plates of tungsten oxides. The electrical conductivity at various temperatures correlated with the average grain size of the nanocrystallites of WO3 thin films.  相似文献   

17.
Propylsulfonic acid-functionalized partially crystalline silicalite-1 materials were synthesized via one step co-condensation technique by varying the molar ratio of organosilane source, 3-mercaptopropyltrimethoxysilane (3MP) to tetraethylorthosilicate (TEOS) in the range of 0.05–0.30, and subsequent oxidation of thiol group to propylsulfonic acid using hydrogen peroxide (H2O2). These materials were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM) and nitrogen adsorption–desorption method. The structure of these materials was determined by Fourier transform infrared spectroscopy (FT-IR) and 29Si and 13C solid state NMR. XRD results show that % crystallinity of the materials decreased with the increase in 3MP concentration in the synthesis mixture. Selected area electron diffraction (SAED) showed the presence of crystalline and amorphous phases in the samples. An amorphous phase was formed when 3MP concentration was 30 mol% of the total silica source. After elimination of the structure directing agent (SDA) by calcination at 420 °C, thermogravimetric analysis (TGA) shows that the structure was thermally stable up to 550 °C. Ammonia temperature-programmed desorption (NH3-TPD) shows that the acid capacity of these materials was in the range of 1.19–1.83 mmol H+/g, which shows that these materials could be used as potential heterogeneous acid catalyst.  相似文献   

18.
Photocatalytic degradation is an ambitious and cost effective technique used for decontamination and sanitization of the waste polluted water of environment. Hydrothermal method is used to synthesis the carbon coupled WO3 nanoparticles with different concentrations of carbon (0.0, 0.2, 0.5, 1.0 and 2.0%) from precursor Na2WO4·2H2O with glucose and nitric acid. Synthesized nanoparticles were characterized by SEM, EDX, XRD, UV–Vis, and PL to study morphology, and particle size, composition, structural and optical properties, respectively. SEM revealed that morphology of the carbon coupled WO3 nanoparticles becomes spherical by increasing amount of coupled carbon atoms. The average grain size of the carbon doped nanoparticles is found to be 15–20 nm. Furthermore, size of nanoparticles affect the band gap of synthesized nanoparticles as well. It has also been observed that carbon coupled WO3 nanoparticles effectively take part in photo degradation due to reduction of electron–hole recombination rate.  相似文献   

19.
Ultrafine WO3 nanoparticles were synthesized by nanocasting route, using mesoporous SiO2 as a template. BET measurements showed a specific surface area of 700 m2/gr for synthesized SiO2, while after impregnation and template removal, this area was reduced to 43 m2/gr for WO3 nanoparticles. HRTEM results showed single crystalline nanoparticles with average particle size of about 5 nm possessing a monoclinic structure, which is the favorite crystal structure for gas sensing applications. Gas sensor was fabricated by deposition of WO3 nanoparticles between electrodes via low frequency AC electrophoretic deposition. Gas sensing measurements showed that this material has a high sensitivity to very low concentrations of NO2 at 250°C and 300°C.  相似文献   

20.
Lanthanum monoaluminate (LaAlO3) nanopowders were synthesized using La(NO3)3·6H2O and Al(NO3)3·6H2O as starting materials by a co-precipitation method. The crystallization kinetics of the LaAlO3 nanopowders has been investigated by using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED patterns show that the rhombohedral LaAlO3 nanopowders have been obtained when the precipitates as calcined at 1092 K for 10 min. The activation energy for the crystallization of the rhombohedral LaAlO3 nanopowders is determined as 286.75 kJ/mol by a non-isothermal method. The TEM examination shows that the rhombohedral LaAlO3 has a spherical morphology with the size ranging from 30 to 50 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号