首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undoped hydrogenated microcrystalline silicon oxygen alloy films (μc-SiO:H) have been prepared from (SiH4+CO2+H2)-plasma in RF glow discharge at a high H2 dilution, moderately high RF power and substrate temperature. A detailed characterization of the films has been done by electrical, optical as well as structural studies, e.g., IR absorption spectroscopy, Raman scattering and transmission electron microscopy. The presence of a very small amount of oxygen induces the crystallization process, which fails to sustain at a higher oxygen dilution. At higher deposition temperature and in improved μc-network H content reduces, however, O incorporation is favoured. Sharp crystallographic rings in the electron diffraction pattern identify several definite planes of c-Si and no such crystal planes from c-SiOX is detected.  相似文献   

2.
The effect of hydrogen dilution was investigated on polycrystalline silicon formation using radio frequency excitation SiH4/ H2 plasma. The hydrogen dilution reduces the growth rate of the a-Si : H films. The dark conductivity of the a-Si : H films increases with increasing H2 dilution. The dark conductivity of the poly-Si films formed by recrystallization annealing of the a-Si : H film decrease with H2 dilution. The grain size, with X-ray diffraction spectroscopy and scanning electron microscopy images of the poly-Si films, is in reverse ratio to the H2 dilution.  相似文献   

3.
The effect of the total SiH4/H2 gas pressure (1–10 Torr) on the growth rate, the film crystallinity and the nature of hydrogen bonding of microcrystalline silicon thin films deposited by 13.56 MHz plasma-enhanced chemical vapour deposition (PECVD) was investigated under well-controlled discharge conditions. The deposition rate presents an optimum for 2.5 Torr, which does not follow the trend of silane consumption that increases with pressure and is attributed to an increase in plasma density. The film crystallinity increases with pressure from 1–2.5 Torr and then remains almost the same, whereas the films deposited at 1 Torr are highly stressed. On the other hand, hydrogen bonding is also drastically affected.  相似文献   

4.
The characteristics of 13.56-MHz discharged SiH4+Ar+H2 plasma at high pressure (2–8 Torr), used for the deposition of hydrogenated nanocrystalline silicon (nc-Si:H) films in a capacitively coupled symmetric PECVD system, has been investigated. Plasma parameters such as average electron density, sheath field and bulk field are extracted from equivalent circuit model of the plasma using outputs (current, voltage and phase) of RF VI probe under different pressure conditions. The conditions of growth in terms of plasma parameters are correlated with properties of the hydrogenated nanocrystalline silicon films characterized by Raman, AFM and dc conductivity. The film deposited at 4 Torr of pressure, where relatively low sheath/bulk field ratio is observed, exhibits high crystallinity and conductivity. The crystalline volume fraction of the films estimated from the Raman spectra is found to vary from 23% to 79%, and the trend of variation is similar to the RF real plasma impedance data.  相似文献   

5.
Using noble gas argon as a diluent of SiH4 in RF glow discharge, undoped μc-Si:H thin films have been developed at a low power density of 30 mW/cm2. It has been found that the gas pressure is a critical factor for the growth of μc-Si:H films. Undoped μc-Si:H films having σD10−6 S/cm and ΔE<0.57 eV have been obtained at and above a critical pressure of 0.8 Torr. When the RF power density is increased to 90 mW/cm2, a more crystalline as well as highly conducting (σD10−4 S/cm) μc-Si:H film has been achieved at a deposition rate of 30 Å/min, which is much higher than that attained from H2-diluted SiH4 plasma, by conventional approach. The crystallinity of the films has been identified by the sharp Raman peak at 520 cm−1 and a large number of micrograins in the TEM micrographs. The metastable state of Ar, denoted as Ar*, plays the crucial role in inducing microcrystallisation by transferring its de-excitation energy at the surface of the growing film. A mechanism has been proposed to explain the dependence of the formation of μc-Si:H film on the working gas pressure in the plasma.  相似文献   

6.
Cu2ZnSnS4 (CZTS) thin films were deposited by sputtering on glass substrates using stacked precursors. The stacked precursor thin films were prepared from Cu, SnS2 and ZnS targets at room temperature with different stacking orders of Cu/SnS2/ZnS/glass (A), ZnS/Cu/SnS2/glass (B) and SnS2/ZnS/Cu/glass (C). The stacked precursor thin films were sulfurized using a tubular rapid thermal annealing system in a mixed N2 (95%)+H2S (5%) atmosphere at 550 °C for 10 min. The effects of the stacking order in the precursor thin films on the structural, morphological, chemical, electrical and optical properties of the CZTS thin films were investigated. X-ray diffraction, Raman spectroscopy and X-ray photoelectron spectroscopy studies showed that the annealed CZTS thin film using a stacking order A had a single kesterite crystal structure without secondary phases, whereas stacking orders B and C have a kesterite phase with secondary phases, such as Cu2−xS, SnS2 and SnS. The annealed CZTS thin film using stacking order A showed a very dense morphology without voids. On the other hand, the annealed CZTS thin films using stacking orders B and C contained the volcano shape voids (B) and Sn-based secondary phases (C) on the surface of the annealed thin films. The direct band gap energies of the CZTS thin films were approximately 1.45 eV (A), 1.35 eV (B) and 1.1 eV (C).  相似文献   

7.
A two-step ball-milling method has been provided to synthesize Mg(BH4)2 using NaBH4 and MgCl2 as starting materials. The method offers high yield and high purity (96%) of the compound. The as-synthesized Mg(BH4)2 is then combined with LiAlH4 by ball-milling in order to form new multi-hydride systems with high hydrogen storage properties. The structure, the dehydrogenation and the reversibility of the combined systems are studied. Analyses show that a metathesis reaction takes place between Mg(BH4)2 and LiAlH4 during milling, forming Mg(AlH4)2 and LiBH4. Mg(BH4)2 is excessive and remains in the ball-milled product when the molar ratio of Mg(BH4)2 to LiAlH4 is over 0.5. The onset dehydrogenation temperature of the combined systems is lowered to ca. 120 °C, which is much lower than that of either Mg(BH4)2 or LiAlH4. The dehydrogenation capacities of the combined systems below 300 °C are all higher than that of both Mg(BH4)2 and LiAlH4. The combined systems are reversible for hydrogen storage at moderate hydrogenation condition, and rapid hydrogenation occurred within the initial 30 min. Moreover, the remained Mg(BH4)2 in the combined systems is found also partially reversible. The mechanism of the enhancement of the hydrogen storage properties and the dehydrogenation/hydrogenation process of the combined systems were discussed.  相似文献   

8.
The various Mg–B–Al–H systems composed of Mg(BH4)2 and different Al-sources (metallic Al, LiAlH4 and its decomposition products) have been investigated as potential hydrogen storage materials. The role of Al was studied on the dehydrogenation and the rehydrogenation of the systems. The results indicate that the different Al-sources exhibit a similar improving effect on the dehydrogenation properties of Mg(BH4)2. Taking the Mg(BH4)2 + LiAlH4 system as an example, at first LiAlH4 rapidly decomposes into LiH and Al, then Mg(BH4)2 decomposes into MgH2 and B, finally the MgH2 reacts with Al, LiH and B, which forms Mg3Al2 and MgAlB4. The system starts to desorb H2 at 140 °C and desorbs 3.6 wt.% H2 below 300 °C, while individual Mg(BH4)2 starts to desorb H2 at 250 °C and desorbs only 1.3 wt.% H2 below 300 °C. The isothermal desorption kinetics of the Mg–B–Al–H systems is about 40% faster than that of Mg(BH4)2 at the hydrogen desorption ratio of 90%. In addition, the Mg–B–Al–H systems show partial reversibility at moderate temperature and pressure. For Al-added system, the product of rehydrogenation is MgH2, while for LiAlH4-added system the product is composed of LiBH4 and MgH2.  相似文献   

9.
We report the surface modification and growth of nanostructures on the surface of titanium oxide thin films during post deposition annealing in molecular hydrogen ambient. Titanium oxide thin films of a thickness of 200 nm were deposited by electron-beam evaporation at a substrate temperature of 300 °C. Films were annealed in 50 and 100 sccm flow rates of hydrogen in the temperature range of 200 °C–600 °C for 4 h. X-ray diffraction analysis showed a polycrystalline structure of the films. Anatase-to-rutile phase transformation took place, and was influenced by the hydrogen flow rate. Atomic force microscopy indicated the growth of 4–6 μm domains enclosed by nanowalls-like boundaries on the surface when the rutile phase was formed. Spectrophotometer measurements indicated that the films were transparent and a red shift in absorption edge was observed due to annealing. The direct band gaps of anatase and rutile were found to be 3.5 eV and 3.2 eV, respectively.  相似文献   

10.
11.
Using ab initio based quantum chemical calculations, we have studied the structure, stability and hydrogen adsorption properties of different boron hydrides decorated with lithium, examples of the corresponding anions being dihydrodiborate dianion, B2H22− and tetrahydrodiborate dianion, B2H42− which can be considered to be analogues and isoelectronic to acetylene (C2H2) and ethelene (C2H4) respectively. It is shown that there exists a B-B double bond in B2H4Li2 and a B-B triple bond in B2H2Li2. In both the complexes, the lithium sites are found to be cationic in nature and the calculated lithium ion binding energies are found to be very high. The cationic sites in these complexes are found to interact with molecular hydrogen through ion-quadrupole and ion-induced dipole interactions. In both the complexes, each lithium site is found to bind a maximum of three hydrogen molecules which corresponds to a gravimetric density of ∼23 wt% in B2H4Li2 and ∼24 wt% in B2H2Li2. We have also studied the hydrogen adsorption in a model one-dimensional nanowire with C6H4B2Li2 as the repeating unit and found that it can adsorb hydrogen to the extent 9.68 wt% and the adsorption energy is found to be −2.34 kcal/mol per molecular hydrogen.  相似文献   

12.
Spray deposited MnO2 thin films onto glass substrate were subjected to a post-deposition heat treatment and the effects of temperature on electrical transport properties were studied in details. The heating and cooling cycles of the samples are reversible after successive heat-treatments in air and vacuum. The films were polycrystalline in structure and the oxygen chemisorption–desorption process was found to play an important role in controlling the electronic properties. Various grain-boundary and energy band parameters were calculated by taking conventional extrinsic semiconductor theory and grain boundary trapping models into account. The samples were non-degenerate n-type semiconductors. The transport properties are interpreted in terms of Seto's model which was proposed for polycrystalline semiconducting films. The inter-crystallite boundaries of the thin films play an important role in the transport properties.  相似文献   

13.
Methane was produced from H2 and CO2 using the acclimated-mixed methanogens in a 3.71 fermentor in batch culture at pH 7.2 and 37°C. The Fermentation kinetics parameter for the growth of methanogens, overall mass transfer coefficient of the reactor, and the conversion rate of H2 and CO2 to CH4 by the acclimated-mixed culture were determined using the technique of Vega et al. The maximum specific growth rate (μmax) and H2 specific consumption rate (qmax) were found to be 0.064(h−1) and 104.8 (mmol h−1 g−1) respectively. Monod saturation constants for growth (Kp) and for inhibition (Kp) were found to be 3.54 (kPa) and 0.57 (kPa), respectively. These findings indicate that without very low dissolved H2 levels, the fermentations are carried out under μmax, and the specific uptake rate (q) was almost not affected at any dissolved H2 level in the range studied. The yield of CH4 (Yp/s) was calculated to be 0.245 (mol CH4 mol−1 H2), which is near the stoichiometric value of 0.25. DH2 was also measured using the Teflon tubing method and was in good agreement with those estimated by kinetic calculations.  相似文献   

14.
The hydrogen storage properties and mechanisms of the Ca(BH4)2-added 2LiNH2–MgH2 system were systematically investigated. The results showed that the addition of Ca(BH4)2 pronouncedly improved hydrogen storage properties of the 2LiNH2–MgH2 system. The onset temperature for dehydrogenation of the 2LiNH2–MgH2–0.3Ca(BH4)2 sample is only 80 °C, a ca. 40 °C decline with respect to the pristine sample. Further hydrogenation examination indicated that the dehydrogenated 2LiNH2–MgH2–0.1Ca(BH4)2 sample could absorb ca. 4.7 wt% of hydrogen at 160 °C and 100 atm while only 0.8 wt% of hydrogen was recharged into the dehydrogenated pristine sample under the same conditions. Structural analyses revealed that during ball milling, a metathesis reaction between Ca(BH4)2 and LiNH2 firstly occurred to convert to Ca(NH2)2 and LiBH4, and then, the newly developed LiBH4 reacted with LiNH2 to form Li4(BH4)(NH2)3. Upon heating, the in situ formed Ca(NH2)2 and Li4(BH4)(NH2)3 work together to significantly decrease the operating temperatures for hydrogen storage in the Ca(BH4)2-added 2LiNH2–MgH2 system.  相似文献   

15.
Nanocrystal TiO2 films were prepared by radio frequency (RF) sputtering technique and coating method, respectively. The samples were treated by Ar RF plasma. The crystal structure, absorption spectra and morphology of the TiO2 films were investigated by X-ray diffraction (XRD), UV–VIS spectrophotometry and atomic force microscopy (AFM). The voltages and photo-currents of the TiO2 electrodes were also measured. By Ar plasma treatment, the photo-currents of the sputtered and coated TiO2 electrodes increased by 80% and 60%, respectively.  相似文献   

16.
Calculations of the ability of titanium-ethylene complexes of the type, Ti:C2H4, to absorb molecular hydrogen have been performed using density functional theory. A maximum of 5H2 molecules can be adsorbed on Ti:C2H4 thereby giving an uptake capacity of 11.72 wt%, in excellent agreement with previous experimental results reported by two of us (Phys. Rev. Lett., 100, 105505, 2008). Calculations of the vibrational frequencies in such complexes with both H2 and D2, Ti:C2H4(nH2) and Ti:C2H4(nD2), n = 1-5, have also been performed and the values obtained used to find the Equilibrium Isotope Effect (EIE). Measurements of the EIE are also reported and these are in excellent agreement with the EIE calculated for 5H2 molecules adsorbed in the complex.  相似文献   

17.
The structures and dehydrogenation properties of pure and Ti/Ni-doped Mg(AlH4)2 were investigated using the first-principles calculations. The dopants mainly affect the geometric and electronic structures of their vicinal AlH4 units. Ti and Ni dopants improve the dehydrogenation of Mg(AlH4)2 in different mechanisms. In the Ti-doped case, Ti prefers to occupy the 13-hedral interstice (TiiA) and substitute for the Al atom (TiAl), to form a high-coordination structure TiHn (n = 6, 7). The Ti 3d electrons hybridize markedly with the H 1s electrons in TiAl and with the Al 3p electrons in TiiA, which weakens the Al–H bond of adjacent AlH4 units and facilitates the hydrogen dissociation. A TiAl3H13 intermediate in TiiA is inferred as the precursor of Mg(AlH4)2 dehydrogenation. In contrast, Ni tends to occupy the octahedral interstice to form the NiH4 tetrahedron. The tight bind of the Ni with its surrounding H atoms inhibits their dissociation though the nearby Al–H bond also becomes weak. Therefore, Ti is the better dopant candidate than Ni for improving the dehydrogenation properties of Mg(AlH4)2 because of its abundant activated hydrogen atoms and low hydrogen removal energy.  相似文献   

18.
The effect of carbon nanofibres (CNFs) on the de/re-hydrogenation characteristics of 1:2 magnesium amide (Mg(NH2)2) and lithium hydride (LiH) mixture is investigated. It is found that the desorption as well as absorption characteristic of the 1:2 Mg(NH2)2/LiH mixture is improved with admixing of different shaped (planar and helical) CNFs separately. The different shaped CNFs were synthesized through catalytic decomposition of acetylene gas over LaNi5 alloy. The synthesized CNFs contain Ni-metal nano particles. Among two different types of nanofibres namely planar carbon nanofibres (PCNFs) and helical carbon nanofibres (HCNFs), the later was found to act as a better catalyst. The decomposition temperature of the pristine Mg(NH2)2/LiH mixture is ∼250 °C, reduced to 150 and 140 °C for the PCNF and HCNF admixed Mg(NH2)2/LiH mixture respectively. The activation energy for dehydrogenation reaction was found to ∼97.2 kJ/mol, which is further reduced to ∼67 and ∼65 kJ/mol for the PCNF and HCNF admixed Mg(NH2)2/LiH mixture respectively. The lowering of decomposition temperature and enhancement in desorption kinetics, with admixing of different shaped CNFs are described and discussed.  相似文献   

19.
Cu2ZnSnS4 (CZTS) is a kesterite semiconductor consisting of abundantly available elements. It has a band gap of 1.5 eV and a large absorption coefficient. Hence, thin films made of this material can be used as absorber layers of a solar cell. CZTS films were deposited on soda lime and Na free borosilicate glass substrates through Ultrasonic Spray Pyrolysis. The diffusion of sodium from soda lime glass was found to have a profound effect on characteristics like grain size, crystal texture and conductivity of CZTS thin films. Copper ion concentration also varied during the deposition and it was observed that the carrier concentration was enhanced when there was a deficiency of copper in the films. The effect of sodium diffusion and copper deficiency in enhancing the structural and electrical properties of CZTS films are presented in this paper.  相似文献   

20.
Hydrogenated nanocrystalline silicon (nc-Si:H) thin films were deposited from pure silane (SiH4) and hydrogen (H2) gas mixture by conventional plasma enhanced chemical vapour deposition (PE-CVD) method at low temperature (200 °C) using high rf power. The structural, optical and electrical properties of these films are carefully and systematically investigated as a function of hydrogen dilution of silane (R). Characterization of these films with low angle X-ray diffraction and Raman spectroscopy revealed that the crystallite size in the films tends to decrease and at same time the volume fraction of crystallites increases with increase in R. The Fourier transform infrared (FTIR) spectroscopic analysis showed at low values of R, the hydrogen is predominantly incorporated in the nc-Si:H films in the mono-hydrogen (SiH) bonding configuration. However, with increasing R the hydrogen bonding in nc-Si:H films shifts from mono-hydrogen (SiH) to di-hydrogen (SiH2) and (SiH2)n complexes. The hydrogen content in the nc-Si:H films decreases with increase in R and was found less than 10 at% over the entire studied range of R. On the other hand, the Tauc's optical band gap remains as high as 2 eV or much higher. The quantum size effect may responsible for higher band gap in nc-Si:H films. A correlation between electrical and structural properties has been found. For optimized deposition conditions, nc-Si:H films with crystallite size 7.67 nm having good degree of crystallinity (84% ) and high band gap (2.25 eV) were obtained with a low hydrogen content (6.5 at%). However, for these optimized conditions, the deposition rate was quite small (1.6 Å/s).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号