首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Silicon nanowire (SiNW) arrays were grown directly on a P type Si substrate, pre-deposited with gold catalyst, and then made into solar cell for photovoltaic characteristic measurement. Different growth conditions of SiNWs, including variation of the flow rate ratio of SiH4 versus N2, and the thickness of Au film, which can be sputtered into different size of nanoparticles, will be made in order to obtain an optimum photovoltaic conversion efficiency. The morphologies and crystalline structure of the nanowires are studied by SEM, TEM and XRD. The SiNW array surface is shown to have good antireflection property, and is expected to raise light absorption and short circuit current. The photovoltaic performance of the solar cells with SiNWs grown at different conditions is measured and discussed. More effort is still needed to raise the performance of SiNW solar cells.  相似文献   

2.
We report fabrication of solar cell (n+-p-p+ structure) on black silicon substrates consisting of silicon nanowire (SiNW) arrays prepared by Ag induced wet chemical etching process in aqueous HF-AgNO3 solution. SiNW arrays surface has low reflectivity (<5%) in the entire spectral range (400-1100 nm) of interest for solar cells. The solar cells were fabricated by conventional cell fabrication protocol. Performance of three types of cells, namely cell with SiNW over the entire front surface, cell with SiNW only in the active device area and control cell (on planar surface), has been compared. It was found that cell based on selectively grown shorter length SiNW arrays has the best cell performance.  相似文献   

3.
Recently, a substantially simplified PERC silicon solar cell has been developed at ISFH with independently confirmed 1-sun efficiencies of up to 20.0%. This paper describes the details of the relatively simple cell fabrication process and experimentally characterizes the new cells. The simplified design involves reflection control by means of random pyramids, the direct evaporation of the front metal grid onto the random pyramids, elimination of the need for nontextured areas underneath the contact grid, and the use of a single phosphorous diffusion (1-step emitter).  相似文献   

4.
This paper shows that rapidly formed emitters in less than 6 min in the hot zone of a conveyor belt furnace or in 3 min in an rapid thermal processing (RTP) system, in conjunction with a screen-printed (SP) RTP Al-BSF and passivating oxide formed simultaneously in 2 min can produce very simple high-efficiency n+-p-p+ cells with no surface texturing, point contacts, or selective emitter. It is shown for the first time that an 80 Ω/□ emitter and SP Al-back surface field (BSF) formed in a high throughput belt furnace produced 19% FZ cells and greater than 17% CZ cells with photolithography (PL) contacts. Using PL contacts, we also achieved 19% efficient cells on FZ, >18% on MCZ, and 17% boron-doped CZ by emitter and SP Al-BSF formation in <10 min in a single wafer RTP system. Finally, manufacturable cells with 45 Ω/□ emitter and SP Al-BSF and Ag contacts formed in the conveyor belt furnace gave 17% efficient cells on FZ silicon. Compared to the PL cells, the SP cell gave 2% lower efficiency along with a decrease in Jsc and fill factor. This loss in performance is attributed to a combination of the poor blue response, higher series resistance and higher contact shading in the SP devices  相似文献   

5.
This paper gives an overview about recent activities in the industrial application of high-efficiency monocrystalline silicon solar cells. It also presents the latest results achieved at Fraunhofer ISE, especially a new patented process for the formation of back-contact points on dielectrically passivated cells called laser-fired contacts and its application to thin wafers.  相似文献   

6.
The efficiency of a solar cell is given by its average electrical parameters. On inhomogeneous materials and especially on large-area solar cells the inhomogeneity of the short circuit current, the open circuit voltage and the fill factor are important factors to reach high and stable efficiencies and may limit the overall performance of the device.A locally increased dark forward current (shunt) reduces the fill factor and the open circuit voltage of the whole cell. The inhomogeneity of the forward current in a solar cell can be measured using lock-in thermography. The quantitative and voltage-dependent evaluation of these thermographic investigations of various solar cell types on mono- or multi-crystalline silicon enables the classification of the different shunting mechanisms found. By further microscopic investigations the physical reasons for the increased dark forward currents can be determined.It turns out that a high density of crystallographic defects like dislocation tangles or microdefects can be responsible for an increased dark forward current. Unexpectedly, grain boundaries in solar cells on multicrystalline silicon do not show any measurable influence on the local dark forward current. In most cases shunts caused by process-induced defects are dominating the current–voltage characteristic at the maximum power point of the solar cell. In commercial solar cells shunts at the edges are most important, followed by shunts beyond the grid lines.  相似文献   

7.
Cost effective process for high-efficiency solar cells   总被引:1,自引:0,他引:1  
S.H. Lee 《Solar Energy》2009,83(8):1285-1289
A new method for patterning the rear passivation layers of high-efficiency solar cells with a mechanical scriber has been developed and successfully adapted to fabricate high-efficiency passivated emitter and rear cell (PERC). Three types of the rear contact patterns: dot patterns with a photolithography process, line and dashed line patterns with a mechanical scriber process have been processed in order to optimize the rear contact structure. An efficiency of 19.42% has been achieved on the mechanical-scribed (MS)-PERC solar cell on 0.5 Ω cm p-type FZ-Si wafer and is comparable to that of conventional PERC solar cells fabricated by using photolithography process. The mechanical scriber process shows great potential for commercial applications by achieving high efficiency above 20% and by significantly reducing the fabrication costs without an expensive photolithography process. Low-cost Ni/Cu metal contact has been formed by using a low-cost electroless and electroplating. Nickel silicide formation at the interface enhances stability and reduces the contact resistance resulting in an energy conversion efficiency of 20.2% on 0.5 Ω cm FZ wafer.  相似文献   

8.
Minority carrier lifetime is the most crucial material parameter for the performance of a silicon solar cell. While numerous methods exist to determine carrier lifetime on solar cell precursors prior to metallization, only very few techniques are capable of implicitly extracting effective minority carrier lifetimes from metallized silicon samples. In this paper, a measurement technique for effective minority carrier lifetime on silicon solar cells and metallized cell precursors via quasi-steady-state photoluminescence is presented. The setup requirements for this measurement technique are elaborated, experimental evidence of the reliability of such measurements down to carrier lifetimes in the range of a microsecond is provided, and a lifetime calibration of spatially resolved photoluminescence images of solar cells via the presented measurement technique is sketched. Finally, the very good agreement between the obtained effective carrier lifetime and the corresponding open circuit voltage of a solar cell is demonstrated.  相似文献   

9.
Low temperature surface passivation for silicon solar cells   总被引:1,自引:0,他引:1  
Surface passivation at low processing temperatures becomes an important topic for cheap solar cell processing. In this study, we first give a broad overview of the state of the art in this field. Subsequently, the results of a series of mutually related experiments are given about surface passivation with direct Plasma Enhanced Chemical Vapour Deposition (PECVD) of silicon oxide (Si-oxide) and silicon nitride (Si-nitride). Results of harmonically modulated microwave reflection experiments are combined with Capacitance-Voltage measurements on Metal-Insulator-Silicon structures (CV-MIS), accelerated degradation tests and with Secondary Ion Mass Spectrometry (SIMS) and Elastic Recoil Detection (ERD) measurements of hydrogen and deuterium concentrations in the passivating layers. A large positive fixed charge density at the interface is very important for the achieved low surface recombination velocities S. The density of interface states Dit is strongly reduced by post deposition anneals. The lowest values of S are obtained with PECVD of Si-nitride. The surface passivation obtained with Si-nitride is stable under typical operating conditions for solar cells. By using deuterium as a tracer it is shown that hydrogen in the ambient of the post deposition anneal does not play a role in the passivation by Si-nitride. Finally, the results of CV-MIS measurements (Capacitance-Voltage measurements on Metal-Insulator-Silicon structures) on deposited Si-nitride layers are used to calculate effective recombination velocities as a function of the injection level at the surface, using a model that is able to predict the surface recombination velocity S at thermally oxidized silicon surfaces. These results are not in agreement with the measured increase of S at low injection levels.  相似文献   

10.
An inkjet printing method for forming openings to buried semiconductor layers of silicon solar cells is described. The method uses an overlying resist as a sacrificial layer onto which a plasticiser for the resist polymer is deposited in a programmed pattern using inkjet printing. At the locations where the plasticiser is printed, the resist becomes permeable to aqueous etching solutions, enabling openings to be created in underlying dielectric or silicon layer(s). The formed openings can be used to create metal contacts to the buried silicon layers of the solar cell. The permeability of the resist to aqueous etchants can be reversed, thus enabling a single resist layer to be used to create more than one set of openings in the underlying layers. The proposed method may also be applied more generally to the formation of patterns of openings in layers of semiconductor or microelectromechanical devices.  相似文献   

11.
Hybrid solar cells are fabricated on the glass substrate using well-aligned single-crystalline Si nanowires (SiNWs) and poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM). Their key benefits are discussed. The well-aligned SiNWs are fabricated from Si wafer and transferred onto the glass substrate with the P3HT:PCBM. Such SiNWs provide uninterrupted conduction paths for electron transport, enhance the optical absorption to serve as an interesting candidate of the absorber, and increase the surface area for exciton dissociation. Our investigations show that SiNWs are promising for hybrid organic photovoltaic cells with improved performance by increasing the short-circuit current density from 7.17 to 11.61 mA/cm2.  相似文献   

12.
Luminescent porous silicon (PS) was prepared for the first time using a spraying set-up, which can diffuse in a homogeneous manner HF solutions, on textured or untextured (1 0 0) oriented monocrystalline silicon substrate. This new method allows us to apply PS onto the front-side surface of silicon solar cells, by supplying very fine HF drops. The front side of N+/P monocrystalline silicon solar cells may be treated for long periods without altering the front grid metallic contact. The monocrystalline silicon solar cells (N+/P, 78.5 cm2) which has undergone the HF-spraying were made with a very simple and low-cost method, allowing front-side Al contamination. A poor but expected 7.5% conversion efficiency was obtained under AM1 illumination. It was shown that under optimised HF concentration, HF-spraying time and flow HF-spraying rate, Al contamination favours the formation of a thin and homogeneous hydrogen-rich PS layer. It was found that under optimised HF-spraying conditions, the hydrogen-rich PS layer decreases the surface reflectivity up to 3% (i.e., increase light absorption), improves the short circuit current (Isc), and the fill factor (FF) (i.e., decreases the series resistance), allowing to reach a 12.5% conversion efficiency. The dramatic improvement of the latter is discussed throughout the influence of HF concentration and spraying time on the IV characteristics and on solar cells parameters. Despite the fact that the thin surfae PS layer acts as a good anti-reflection coating (ARC), it improves the spectral response of the cells, especially in the blue-side of the solar spectrum, where absorption becomes greater, owing to surface band gap widening and conversion of a part of UV and blue light into longer wavelengths (that are more suitable for conversion in a Si cell) throughout quantum confinement into the PS layer.  相似文献   

13.
Silicon nanowires with hydride, methyl and siloxane surfaces terminations were evaluated as anodes in lithium-ion half cells using LiPF6 in EC/DMC electrolytes. Voltammetry, FT-IR and XPS analyses show hydride-terminated nanowires react with the electrolyte and methyl termination tends to passivate silicon surfaces. Silicon anodes pretreated with trimethoxymethylsilane show decreased lithium capacities similar to methylated anodes; however, the addition of 5% trimethoxymethylsilane as an electrolyte additive resulted in the formation of significantly more OPFx compounds while improving capacity retention relative to hydride-terminated nanowires (2348 mAh g−1 at 15 cycles at C/10 rates). FTIR analysis show trimethoxymethylsilane additives covalently bond silicon surfaces and other SEI components. AFM nano-indentation tests also suggest the alkoxy silane additives in the electrolyte function as a binder to improve silicon's ability to withstand the large reversible volume changes. The results indicate silicon surface terminations play a key role in chemical and mechanical behaviors that control reversibility.  相似文献   

14.
In order to be useful for certain niche applications, crystalline silicon solar cells must be able to sustain either one-time flexure or multiple non-critical flexures without significant loss of strength or efficiency. This paper describes experimental characterisation of the behaviour of thin crystalline silicon solar cells, under either static or repeated flexure, by flexing samples and recording any resulting changes in performance. Thin SLIVER cells were used for the experiment. Mechanical strength was found to be unaffected after 100,000 flexures. Solar conversion efficiency remained at greater than 95% of the initial value after 100,000 flexures. Prolonged one-time flexure close to, but not below, the fracture radius resulted in no significant change of properties. For every sample, fracture occurred either on the first flexure to a given radius of curvature, or not at all when using that radius. In summary, for a given radius of curvature, either the flexed solar cells broke immediately, or they were essentially unaffected by prolonged or multiple flexing.  相似文献   

15.
Reduction in optical losses in mono-crystalline silicon solar cells by surface texturing is one of the important issues of modern silicon photovoltaics. In order to achieve good uniformity in pyramidal structures on the silicon surface, a mixture of sodium hydroxide (NaOH) or potassium hydroxide (KOH) and isopropyl alcohol (IPA) is generally used during texturization of mono-crystalline silicon solar cell. However, due to the high cost of IPA, there is always a search for alternate chemical which plays the same role as IPA during texturization for industrial solar cell production. For a better texturization, the interfacial energy between silicon and ionized electrolyte of chemical solution should be reduced to achieve sufficient wettability of the silicon surface, which will enhance the pyramid nucleation. In this work, we have investigated the role of hydrazine mono-hydrate as a surface-active additive, which supplies OH ions after its dissociation. Our process cuts down the IPA consumption during texturing without any loss in uniformity of textured pyramids. We are the first to report the novel idea to add hydrazine mono-hydrate in NaOH solution for texturing mono-crystalline silicon surface to fabricate solar cells with more than 85% yield in the efficiency range of 14.5–15.3%.  相似文献   

16.
A new method of improvement of efficiency of silicon solar cells (SC) with structure of Al/tunneling thin SiOx/p-Si with induced inversion layer (MIS/IL) during their operation in solar modules structure has been presented. The method proposes modification of joining of the SC into modules as well as their photovoltaic properties improvement by means of external electrical bias. A mechanism of the reverse bias influence on structural parameters of the MIS/IL SC was studied theoretically. Relations expressing functional dependence of the MIS/IL structure parameters, and output electrical characteristics of SC on its base as function of the bias voltage value were obtained. Results of numerical calculations demonstrating efficiency of use of reverse electrical bias in the range from 0 to 0.6 V to increase the efficiency of the MIS/IL SC are presented. The method of external impact proposed has been compared with methods using technological aspects of silicon MIS/IL structures improvement.  相似文献   

17.
This paper reports a novel approach on the surface treatment of monocrystalline silicon solar cells using an inorganic chemical, sodium hypochlorite (NaOCl) that has some remarkable properties. The treatment of contaminated crystalline silicon wafer with hot NaOCl helps the removal of organic contaminants due to its oxidizing properties. The objective of this paper is to establish the effectiveness of this treatment using hot NaOCl solution before the saw damage removal step of the conventional NaOH texturing approach. A comparative study of surface morphology and FTIR analyses of textured monocrystalline silicon surfaces with and without NaOCl pre-treatment is also reported. The process could result in a significant low cost approach viable for cleaning silicon wafers on a mass production scale.  相似文献   

18.
A new type of photovoltaic system with higher generation power density has been studied in detail. The feature of the system is a V-shaped module (VSM) with two tilted monocrystalline solar cells. Compared to solar cells in a flat orientation, the VSM enhances external quantum efficiency and leads to an increase of 31% in power conversion efficiency. Due to the VSM technique, short-circuit current density was raised from 24.94 to 33.7 mA/cm2, but both fill factor and open-circuit voltage were approximately unchanged. For the VSM similar results (about 30% increase) were obtained for solar cells fabricated by using mono-crystalline silicon wafers with only conventional background impurities.  相似文献   

19.
Purification of metallurgical grade silicon by a solar process   总被引:3,自引:0,他引:3  
The purification of upgraded metallurgical silicon by extraction of boron and phosphorus was experimentally demonstrated using concentrated solar radiation in the temperature range 1550–1700 °C. The process operated with a flow of Ar at reduced pressure (0.05 atm) for elimination of P, and with a flow of H2O for elimination of B. Impurity content decreased by a factor of 3 after a 50-min solar treatment, yielding Si samples with final average content of 2.1 ppmw B and 3.2 ppmw P.  相似文献   

20.
Coarse-grained silicon films for crystalline silicon thin-film solar cells have been prepared by zone melting recrystallization. A zone melting heater was modified to obtain better temperature homogeneity of the sample and higher reproducibility of the melt process. Various substrate materials of different purity and surface roughness have been tested concerning their suitability for, silicon deposition, zone melting and solar cell process. Solar cell efficiencies up to 10.5% could be achieved on silicon sheets from powder, capped by an intermediate layer. Silicon films on SiAlON ceramics were successfully processed to solar cells by a completely dry solar cell process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号