首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Small molecule organic solar cell with an optimized hybrid planar-mixed molecular heterojunction (PM-HJ) structure of indium tin oxide (ITO)/ poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) doped with 4 wt% sorbitol/ pentacene (2 nm)/ copper phthalocyanine (CuPc) (10 nm)/ CuPc: C60 mixed (20 nm)/ fullerene (C60) (20 nm)/ bathocuproine (BCP) (10 nm)/Al was fabricated. PEDOT: PSS layer doped with 4 wt% sorbitol and pentacene layer were used as interlayers between the ITO anode and CuPc layer to help the hole transport. And then the short-circuit current (Jsc) of solar cell was enhanced by inserting both the PEDOT: PSS (4 wt% sorbitol) and the pentacene, resulting in a 400% enhancement in power conversion efficiency (PCE). The maximum PCE of 3.9% was obtained under 1sun standard AM1.5G solar illumination of 100 mW/cm2.  相似文献   

2.
An indium tin oxide/titanium oxide/[6,6]-phenyl C61 butyric acid methyl ester:regioregular poly(3-hexylthiophene)/poly(3,4-ethylenedioxylenethiophene):poly(4-styrene sulfonic acid)/Au type organic solar cell (ITO/TiOx/PCBM:P3HT/PEDOT:PSS/Au) with 1 cm2 active area, which is called “inverted-type solar cell”, was developed using an ITO/amorphous titanium oxide (TiOx) electrode prepared by a sol-gel technique instead of a low functional electrode such as Al. The power conversion efficiency (η) of 2.47% was obtained by irradiating AM 1.5G-100 mW cm−2 simulated sunlight. We found that a photoconduction of TiOx by irradiating UV light containing slightly in the simulated sunlight was required to drive this solar cell. The device durability in an ambient atmosphere was maintained for more than 20 h under continuous light irradiation. Further, when the air-stable device was covered by a glass plate with a water getter sheet which was coated by an epoxy-UV resin as sealing material, the durability was still higher and over 96% of relative efficiency was observed even after continuous light irradiation for 120 h.  相似文献   

3.
Efficient bulk-heterojunction (BHJ) (regioregular poly (3-hexylthiophene) (P3HT): (6, 6)-phenyl C61 butyric acid methyl ester (PCBM)) solar cells were fabricated with molybdenum trioxide (MoO3) and copper phthalocyanine (CuPc) as buffer layers. The insertion of MoO3 layer was found to be critical to the device performance, effectively extracting holes to prevent the exciton quenching and reducing the interfacial resistance because of alignment of energy levels. The introduction of CuPc buffer layer was observed to be ameliorative for device performance, further enlarging the visible absorption spectra range of the devices. The effect of the MoO3 and CuPc layer thickness on device performance was studied. The optimized thickness was achieved when MoO3 layer was 12 nm and CuPc layer was 6 nm, resulting in optimized power conversion efficiency (PCE) of 3.76% under AM1.5G 100 mW/cm2 illumination.  相似文献   

4.
Organic vapour-phase deposition (OVPD®) is used for the growth of the organic solar cell component materials such as the donor copper phthalocyanine (CuPc), the acceptor fullerene C60, and electron-conducting buffer layers of bathocuproine (BCP) on Si1 0 0 wafers and indium tin oxide (ITO) substrates on areas as large as 15×15 cm2. By means of X-ray diffraction (XRD) analysis we show that under continuous operating conditions the source materials possess long-term stability. The CuPc, C60 and BCP thin film morphology and structure are characterised using scanning electron microscopy and XRD analysis. We demonstrate CuPc thin films with a highly folded surface morphology suitable for the preparation of solar cells with an interpenetrating donor–acceptor interface. The XRD diffraction patterns of the CuPc and C60 layers deposited under conditions appropriate for the preparation of organic solar cells show spectra typical for these materials. Mixed CuPc:C60 layers with controlled constituent ratios and layer thickness are deposited for the preparation of organic solar cells. First ITO/CuPc:C60/Al organic photovoltaic devices are prepared with an efficiency of 1% (conditions AM1.5).  相似文献   

5.
In this paper we present the realization of extremely thin absorber (ETA) solar cells employing conductive glass substrates functionalized with TiO2 microstructures produced by embossing. Nanocrystalline or compact TiO2 films on Indium doped tin oxide (ITO) glass substrates were embossed by pressing a silicon stamp containing a μm size raised grid structure into the TiO2 by use of a hydraulic press (1 ton/50 cm2). The performance of these microstructured substrates in a ETA cell sensitized by a thermally evaporated or chemical bath deposited PbS film and completed by a PEDOT:PSS hole conductor layer and a Au counter electrode is compared to that of planar substrates. Surprisingly planar films produced better performance than micro-structured films. A simple model implying photoconductive shunting paths revealed by junction breakdown at negative bias under illumination is presented.  相似文献   

6.
A multiple electrophoretic deposition (EPD) of binder-free TiO2 photoanode has been developed to successfully fill the crack occurring after air-drying on the first EPD-TiO2 film surface. With the slow 2nd EPD, high quality TiO2 thin films are acquired on flexible ITO/PEN substrates at room temperature and the device efficiency of the dye-sensitized solar cell achieved 5.54% with a high fill factor of 0.721. Electrochemical impedance spectroscopy measurements analyze the great enhancement of the photovoltaic performance through multiple EPD. The electron diffusion coefficient improved by about 1 order of magnitude in crack-less multiple-EPD TiO2 films. With the scattering layer, the device reveals a high conversion efficiency of up to 6.63% under AM 1.5 G one sun irradiation, having a short circuit current density, open circuit voltage, and filling factor of 12.06 mA cm−2, 0.763 V and 0.72, respectively.  相似文献   

7.
The mechanical flexibility of transparent poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) films printed onto a flexible PET substrate using a gravure printing method was investigated using a lab-made bending test system. Gravure-printed PEDOT:PSS electrodes with a sheet resistance of 359 Ω/square and a transparency of 88.92% showed outstanding flexibility in several types of flexibility tests, including outer/inner bending, twisting and stretching. Notably, the PEDOT:PSS electrode had a constant resistance change (ΔR/R0) within an outer and inner bending radius of 10 mm. In addition the stretched PEDOT:PSS electrode showed a fairly constant resistance change (ΔR/R0) up to 4%, which is more stable than the resistance change of conventional amorphous ITO electrode. The twisting test revealed that the resistance of the PEDOT:PSS electrode began to increase at an angle of 36° due to delamination of the film from the PET substrate. Despite the high sheet resistance of the PEDOT:PSS electrode the flexible organic solar cells fabricated on the PEDOT:PSS electrode showed a power conversion efficiency of ∼2% (FF: 44.9%, Vo: 0.495 V and Jsc: 9.1 mA/cm2), indicating the possibility of using gravure printed PEDOT:PSS as a flexible and transparent electrode for printing-based flexible organic solar cells.  相似文献   

8.
We study the degradation of photovoltaic cells with poly(3-hexyl thiophene) (P3HT) and (6,6)-phenyl C61-butyric acid methyl ester (PCBM) blends under long-term continuous illumination as well as in shelf-life conditions, both in inert N2 atmosphere. Degradation of the illuminated solar cells mainly occurs by a rapid decrease of the fill factor (FF) after 300 h, while short-circuit current and open-circuit voltage follow a linear decay after the initial burn-in. The sudden drop of the FF is correlated with an increase of the series resistance and proves irreversible upon annealing. Electrical measurements indicate that it stems from reduced charge extraction due to the photodegradation of the organic-electrode interfaces. Furthermore, as the external quantum efficiency (EQE) spectrum is evenly lowered over the entire wavelength range, we could exclude major changes in the blend morphology or significant changes to optical properties of the active layer. Introducing a thin C60 layer leads to complete suppression of the FF decay over 1000 h, further proving that interface degradation dominates. Interestingly, similar improved lifetime over 1000 h was achieved by separate substitution of MoO3 for PEDOT:PSS.  相似文献   

9.
A novel fullerene derivative with an N-hexylphenothiazine moiety, PTZ-C60, was synthesized and characterized. The new synthesized fullerene showed good solubility in common organic solvents such as toluene, chlorobenzene and 1, 2 dichlorobenzene. The synthetic product PTZ-C60 was characterized by 1H and 13C NMR, FT-IR and UV-vis spectroscopy. Photovoltaic devices were fabricated using the new fullerene derivative as the electron acceptor and P3HT as the electron donor. The configuration of the device was as follows: ITO/PEDOT:PSS/active layer/LiF/Al. The weight ratios of the electron donor to the acceptor in the active layer were 1:0.5, 1:0.7, and 1:1. The open-circuit voltage (Voc) of the fabricated devices was found to be higher than that of devices based on C60 because the LUMO energy level of the new fullerene derivative was higher than that of C60. Further, the power conversion efficiency (PCE) of these devices was observed to be high when annealing was carried out at 150 °C for 5 min and the thickness of the active layer was 80 nm. The maximum Voc, short-circuit current density, and PCE of the best device were 0.608 V, 4.393 mA/cm2, and 1.29%, respectively.  相似文献   

10.
Fully organic solar cells (OSCs) based on polymers and fullerenes have attracted remarkable interest during the last decade and high power conversion efficiencies (PCEs) beyond 8% have been realized. However, air stability of these cells remains poor. The conventional geometry of OSCs utilizes strongly oxidizing metal top contacts like Al or Ca. These metals are easily oxidized in air resulting in rapid decrease of PCE if cells are not perfectly encapsulated. Using a thin electron-selective hole-blocking bottom layer like TiO2 enables fabrication of solar cells in a so-called inverted geometry. In this geometry, noble metals like Ag or Au can be used as top contacts, which are less sensitive to ambient oxygen. Thus, air-stability of these inverted solar cells is significantly improved. In this study we investigate inverted polythiophene-methanofullerene solar cells. We find significant influence of the TiO2 layer thickness on light absorption and illumination stability of the solar cells, as well as the trap filling by photoinduced carriers. Even though TiO2 layers as thick as 500 nm seem not to be detrimental for charge transport, light intensity losses limit the device performance. In turn, illumination stability is better for thicker TiO2 layers, which can serve as UV filters and protect the photoactive materials from degradation, when compared to thin TiO2 layers. Considering these different effects we state that a thickness of 100 nm is the optimization of the TiO2 layer.  相似文献   

11.
Degradation mechanisms of a photovoltaic device with an Al/C60/C12-PSV/PEDOT:PSS/ITO/glass geometry was studied using a combination of in-plane physical and chemical analysis techniques: TOF-SIMS, AFM, SEM, interference microscopy and fluorescence microscopy. A comparison was made between a device being stored in darkness in air and a device that had been subjected to illumination under simulated sunlight (1000  W m–2, AM1.5) in air. It was found that oxygen diffuses through pinholes in the aluminium electrode. If stored in air in the dark the oxidation is limited to the C60 layer. Illumination accelerates the oxidation/degradation and thus expands the process to involve at least the underlying layer of C12-PSV. Furthermore, it was found that particles are formed in the device during storage.  相似文献   

12.
Electrochromic TiO2 anatase thin films on F-doped tin oxide (FTO) substrates were prepared by doctor blade method using a colloidal solution of titanium oxide with particles of 15 nm in size. The films were transparent in the visible range and well colored in a solution of 1 M LiClO4 in propylene carbonate. The transmittances of the colored films were found to be strongly dependent on the Li+ inserted charges. The response time of the electrochromic device coloration was found to be as small as 2 s for a 1 cm2 sample and the coloration efficiency at a wavelength of 550 nm reached a value as high as 33.7 cm2 C−1 for a 600 nm thick nanocrystalline-TiO2 on a FTO-coated glass substrate. Combining the experimental data obtained from in situ transmittance spectra and in situ X-ray diffraction analysis with the data from chronoamperometric measurements, it was clearly demonstrated that Li+ insertion (extraction) into (out of) the TiO2 anatase films resulted in the formation (disappearance) of the Li0.5TiO2 compound. Potential application of nanocrystalline porous TiO2 films in large-area electrochromic windows may be considered.  相似文献   

13.
Indium-free and acid-resistant anatase Nb-doped TiO2 (NTO) electrodes are promising as economical substitutes for high-cost Sn-doped In2O3 (ITO) films used in organic photovoltaics. By rapid-thermal annealing under an ambient vacuum, an insulating amorphous NTO film of low transparency was changed dramatically into a transparent and conductive anatase NTO electrode. Metallic conductivity of the annealed NTO electrode could be attributed to formation of the anatase phase and activation of the Nb dopant. Based on synchrotron X-ray scattering and high-resolution transmission electron microscopy, the electrical properties of the NTO electrode could be correlated with the microstructure of the NTO film. The acid-stability of NTO film also supports its use as a substitute for ITO electrode. Unlike Ga:ZnO and Al:ZnO films, which were easily etched by acidic PEDOT:PSS solution, the NTO film was stable against this reagent. Importantly, the annealing temperature influenced the performance of the organic solar cell fabricated with the NTO electrode. This indicates that activation of Nb dopants and formation of the anatase phase play an important role in the extraction of carrier from the organic layer to the anode electrode.  相似文献   

14.
Efficient hybrid solar cells fabricated from TiO2, novel carboxylated polythiophene poly (3-thiophenemalonic acid) P3TMA as sensitizer as well as hole conductor and poly (3-hexylthiophene) (P3HT) as hole transporter was described. UV-Vis absorption and morphology of the active layer were investigated. Device J/V characterizations with different P3HT layer thickness were measured and discussed. Efficiency improvements were observed in thinner P3HT layer thickness and with poly[3,4-(ethylenedioxy)-thiophene]:poly(styrene sulfonate) (PEDOT:PSS) as charge collection layer, and such device showed a short-circuit current density of 1.32 mA/cm2, an open-circuit voltage of 0.44 V, a fill factor of 0.43, and a energy conversion efficiency of 0.25% at A.M. 1.5 solar illumination (100 mW/cm2).  相似文献   

15.
In this study, we engineer and investigate the interface structure and chemistry at the indium tin oxide (ITO) anode (front-side electrode) as well as at the Mg−Ag cathode (back-side electrode) in metal phthalocyanine (MePc)/C60 organic solar cells (OSCs).For the front-side electrode, Zn-phthalocyaninetetraphosphonic acid (Zn-PTPA) and Sn-phthalocyanine axially substituted with tartaric acid (Sn-PTA) have been used for the surface termination of ITO coated glass substrates. Both terminations yielded OSCs with higher fill factors and open circuit voltages, thus increasing the power conversion efficiency by 33% and 67%, respectively. A possible influence of a chemisorbed Zn-PTPA on the film growth of the adjacent ZnPc absorber in the vicinity of the hybrid interface is discussed using X-ray reflectivity and near edge X-ray absorption fine structure data. Distinct effects of the Zn-PTPA and Sn-PTA terminations on the electronic properties of the ITO surface were found by X-ray photoelectron spectroscopy (XPS) measurements at the valence band edge. We demonstrate the possibility to engineer the hybrid interface without additional buffer.For the back-side electrode we report the formation of buffer-free charge carrier selective Mg−Ag cathodes, which are applied for bulk heterojunction organic absorbers consisting of copper phthalocyanine (CuPc) donor and fullerene C60 acceptor materials. The chemical and structural properties of the CuPc:C60/Mg−Ag interface are investigated by element depth profiling using secondary ion mass spectrometry (SIMS), grazing incidence X-ray diffraction analysis (GI-XRD) and XPS.We demonstrate that an optimum charge carrier selectivity is achieved with Mg:Ag/Ag cathode structures, where the Mg:Ag alloy layer has a composition close to that of Ag3Mg. In addition, Mg diffusion into CuPc:C60 layer is observed. As a result, an interaction between Mg and Cu2+ with a concurrent change in oxidation state of both metals takes place. However, no formation of MgPc is observed.The findings of this work are discussed against the background of the performance and electrical properties of the corresponding MePc/C60-based organic solar cells.  相似文献   

16.
Quasi-solid-state dye-sensitized solar cells with enhanced performance were made by using nanocrystalline TiO2 films without any template deposited on plastic or glass substrates at low temperature. A simple and benign procedure was developed to synthesize the low-temperature TiO2 nanostructured films. According to this method, a small quantity of titanium isopropoxide (TTIP) was added in an ethanolic dispersion of TiO2 powder consisting of nanoparticles at room temperature, which after alkoxide's hydrolysis helps to the connection between TiO2 particles and to the formation of mechanically stable thick films on plastic or glass substrates. Pure TiO2 films without any organic residuals consisting of nanoparticles were formed with surface area of 56 m2/g and pore volume of 0.383 cm3/g similar to that obtained for Degussa-P25 powder. The structural properties of the films were characterized by microscopy techniques, X-ray diffractometry, and porosimetry. Overall solar to electric energy conversion efficiencies of 5.3% and 3.2% (under 1sun) were achieved for quasi-solid-state dye-sensitized solar cells employing such TiO2 films on F:SnO2 glass and ITO plastic substrates, respectively. Thus, the quasi-solid-state device based on low-temperature TiO2 attains a conversion efficiency which is very close to that obtained for cells consisting of TiO2 nanoparticles sintered at high temperature.  相似文献   

17.
Organic photovoltaic devices using an electrode of indium tin oxide (ITO) coated with a buffer layer of poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) exposed to controlled humidity during fabrication showed a 65-75% decrease in efficiency and displayed S-shaped J-V curves, changes, which are attributed to different levels of indium and tin migration into the PEDOT:PSS film. A distinct shift in the secondary electron cut-off in the UV Photoelectron spectra (UPS) of ITO/PEDOT:PSS samples exposed to controlled humidity indicate an increase of the dipole at the ITO/PEDOT:PSS interface, which could explain the appearance of S-shaped J-V curves. Additionally, the electron density at low binding energies is reduced for the humidity exposed PEDOT:PSS suggesting a second mechanism for decreased device performance.  相似文献   

18.
The fabrication process of a photovoltaic cell with a structure of indium-tin-oxide (ITO)/double ZnO/C60/poly(3-hexylthiophene) (PAT6)/Ag has been investigated. The C60/PAT6 heterojunction of this cell was fabricated by spin-coating a chloroform solution of PAT6 onto the C60 thin film formed on double-layer ZnO-coated ITO. The fabrication of this double-layer ZnO was a new method, which was a composite of a sputtered ZnO layer and oriented zinc oxide nanograins layer fabricated at low temperature (343 K). Insertion of the double-layer ZnO in the photovoltaic cells produced enhanced performance with the power conversion efficiency of 1.31% under AM1.5 illumination.  相似文献   

19.
The presence of a transparent conductive electrode such as indium tin oxide (ITO) limits the reliability and cost price of organic photovoltaic devices as it is brittle and expensive. Moreover, the relative high sheet resistance of an ITO electrode on flexible substrates limits the maximum width of a single cell. We have developed an alternative ITO-free transparent anode, based on solution processed high conductive PEDOT:PSS in combination with a printed current collecting grid. The screen printed silver grid demonstrates a typical sheet resistance of 1 Ω/□ with 6.4-8% surface coverage. The efficiency of a flexible device with an active area of 4 cm2 with such a grid is much higher than a similar device based on ITO. Furthermore, as this composite anode is solution-processed, it is a step forward towards low-cost large area processing.  相似文献   

20.
A MoO3/Au/MoO3 structure with a protective barrier Al2O3 was developed to suppress the reactions between MoO3 and the PEDOT:PSS film in organic solar cells (OSCs). Though the maximum optical transmittance of this structure was 66% at 550 nm wavelength, the power conversion efficiency of a MoO3/Au/MoO3/Al2O3/PEDOT:PSS based OSCs was 2.77%, comparable to the 2.89% of an ITO-based OSCs. The introduction of a very thin Al2O3 layer between the MoO3 and the acidic PEDOT:PSS film effectively protected the MoO3 from the acidic and water dispersed PEDOT:PSS film, increasing the Jsc, Voc and FF of the structure above those of the MoO3/Au/MoO3/PEDOT:PSS structure. The Al2O3 (1 nm) introduced to the MoO3/Au/MoO3 structure improved Jsc because it suppressed the reactions between MoO3 and PEDOT:PSS and lowered the work function of the PEDOT:PSS film. The MoO3/Au/MoO3/Al2O3 electrode was shown to be a promising replacement of ITO for use in flexible optoelectronic devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号