首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 568 毫秒
1.
A series of polystyrene graft palmitic acid (PA) copolymers as novel polymeric solid-solid phase change materials (PCMs) were synthesized. In solid-solid PCMs, polystyrene is the skeleton and PA is a functional side chain that stores and releases heat during its phase transition process. The heat storage of copolymers is due to phase transition between crystalline and amorphous states of the soft segment PA in copolymer and the hard segment polystyrene restricted the free movement of molecular chains of the soft segments even above the phase transition temperature. The copolymers always remain in the solid state during the phase transition processing and therefore they are described as form-stable PCM. Fourier transform infrared spectroscopy (FT-IR) and polarization optical microscopy (POM) analyses were performed to investigate the chemical structures and crystalline morphology. Thermal energy storage properties, thermal reliability and thermal stability of the PCMs were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) methods. Thermal conductivities of the PCMs were also measured using thermal property analyzer. The analysis results indicated that the PA chains were successfully grafted onto the polystyrene backbone and the copolymers showed typical solid-solid phase transition properties. Moreover, thermal cycling test showed that the copolymers have good thermal reliability and chemical stability although they were subjected to 5000 heating/cooling cycling. The synthesized polystyrene-graft-PA copolymers as novel solid-solid PCMs have considerable potential for such as underfloor heating, thermo-regulated fibers and heating and cooling of agricultural greenhouses. Especially, the polystyrene-graft-PA copolymer including 75% PA is the most attractive PCM due to its highest latent heat storage capacity in the synthesized copolymer PCMs.  相似文献   

2.
A series of poly(styrene-co-allyalcohol)-graft-stearic acid copolymers were synthesized as novel polymeric solid–solid phase change materials (SSPCMs). The graft copolymerization reactions between poly(styrene-co-allyalcohol) and stearoyl chloride were verified by Fourier transform infrared (FT-IR) and Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy techniques. The crystal morphology of the SSPCMs was investigated using polarized optical microscopy (POM) technique. Thermal energy storage properties of the synthesized SSPCMs were measured using differential scanning calorimetry (DSC) analysis. The POM results showed that the crystalline phase of the copolymers transformed to amorphous phase above their phase transition temperatures. Thermal energy storage properties of the synthesized SSPCMs were investigated by differential scanning calorimetry (DSC) and found that they had typical solid–solid phase transition temperatures in the range of 27–30 °C and high latent heat enthalpy between 34 and 74 J/g. Especially, the copolymer with the mole ratio of 1/1 (poly(styrene-co-allyalcohol)/stearoyl chloride) is the most attractive one due to the highest latent heat storage capacity among them. The results of DSC and FT-IR analysis indicated that the synthesized SSPCMs had good thermal reliability and chemical stability after 5000 thermal cycles. Thermogravimetric (TG) analysis results suggested that the synthesized SSPCMs had high thermal resistance. In addition, thermal conductivity measurements signified that the synthesized PCMs had higher thermal conductivity compared to that of poly(styrene-co-allyalcohol). The synthesized copolymers as novel SSPCMs have considerable potential for thermal energy storage applications such as solar space heating and cooling in buildings and greenhouses.  相似文献   

3.
Nanofluids, particularly water‐based nanofluids, have been extensively studied as liquid–solid phase change materials (PCMs) for thermal energy storage (TES). In this study, nanofluids with aqueous ethylene glycol (EG) solution as the base fluid are proposed as a novel PCM for cold thermal energy storage. Nanofluids were prepared by dispersing 0.1–0.4 wt% TiO2 nanoparticles into 12, 22, and 34 vol.% EG solutions. The dispersion stability of the nanofluids was evaluated by Turbiscan Lab. The liquid–solid phase change characteristics of the nanofluids were also investigated. Phase change temperature (PCT), nucleation temperature, and half freezing time (HFT) were investigated in freezing experiments. Subcooling degree and HFT reduction were then calculated. Latent heat of solidification was measured using differential scanning calorimetry. Thermal conductivity was determined using the hot disk thermal constant analyzer. Experimental results show that the nanoparticles decreased the PCT of 34 vol.% EG solution but minimally influenced the PCT of 12 and 22 vol.% EG solutions. For all nanofluids, the nanoparticles decreased the subcooling degree, HFT, and latent heat but increased the thermal conductivity of the EG solutions. The mechanism of the improvement of the phase change characteristics and decrease in latent heat by the nanoparticles was discussed. The nanoparticles simultaneously served as nucleating agent that induced crystal nucleation and as impurities that disturbed the growth of water crystals in EG solution‐based nanofluids. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
《Applied Thermal Engineering》2007,27(8-9):1271-1277
This study aimed determination of proper amount of paraffin (n-docosane) absorbed into expanded graphite (EG) to obtain form-stable composite as phase change material (PCM), examination of the influence of EG addition on the thermal conductivity using transient hot-wire method and investigation of latent heat thermal energy storage (LHTES) characteristics of paraffin such as melting time, melting temperature and latent heat capacity using differential scanning calorimetry (DSC) technique. The paraffin/EG composites with the mass fraction of 2%, 4%, 7%, and 10% EG were prepared by absorbing liquid paraffin into the EG. The composite PCM with mass fraction of 10% EG was considered as form-stable allowing no leakage of melted paraffin during the solid–liquid phase change due to capillary and surface tension forces of EG. Thermal conductivity of the pure paraffin and the composite PCMs including 2, 4, 7 and 10 wt% EG were measured as 0.22, 0.40, 0.52, 0.68 and 0.82 W/m K, respectively. Melting time test showed that the increasing thermal conductivity of paraffin noticeably decreased its melting time. Furthermore, DSC analysis indicated that changes in the melting temperatures of the composite PCMs were not considerable, and their latent heat capacities were approximately equivalent to the values calculated based on the mass ratios of the paraffin in the composites. It was concluded that the composite PCM with the mass fraction of 10% EG was the most promising one for LHTES applications due to its form-stable property, direct usability without a need of extra storage container, high thermal conductivity, good melting temperature and satisfying latent heat storage capacity.  相似文献   

5.
Thermal characterization of Phase Change Materials (PCMs) based on linear low-density polyethylene (LLDPE), paraffin wax (W) and expanded graphite (EG) is reported in this paper. Investigated PCMs showed high potential for application in energy storage systems.The latent heat, Lm, sensible heat Qsens, and the ability of the prepared PCMs to store and release thermal energy were investigated using specific home-made equipment based on the transient guarded hot plane method (TGHPT). The sensible heat of PCM containing 40 wt.% of paraffin wax was investigated in the temperature range 25–35 °C, they exhibited a drop in Qsens from 31 to 24 J/g depending on the concentration of EG. A similar decrease in sensible heat with increased loading of EG was observed for PCMs containing 50 wt.% of EG.The storage and release of thermal energy during phase change which is associated with the latent heat of the materials were investigated within the temperature range 20–50 °C. PCMs containing 40 wt.% of paraffin wax exhibited latent heat of 36 J/g, whereas the latent heat of PCMs containing 50 wt.% of paraffin wax was 49 J/g. The addition of EG decreased the time needed to melt and solidify PCMs due to increase in thermal conductivity of PCMs with increase in EG content. This behavior was confirmed by the thermal conductivity measurements, where thermal conductivity increased from 0.252 for sample without EG to 1.329 W/m × °C for PCM containing 15 wt.% of EG.The reproducibility of storage and release of thermal energy by PCMs was demonstrated by subjecting them to repeated heating and cooling cycles (over 150 cycles).  相似文献   

6.
A series of polyol acetal derivatives were synthesized through condensation reactions of aromatic aldehyde with polyols, including sorbitol, mannitol, xylitol, and pentaerythritol. They were examined as gelators in the formation of paraffin-based shape-stabilized phase change materials (PCMs), in which 1,3:2,4-di-(4-methyl) benzylidene sorbitol (MDBS) exhibited excellent thermal stability. Three-dimensional netted structural phase change materials were obtained by paraffin doped with different gelators, which were thermally stable so that no leakage of paraffin occurs even under higher temperature than the melting point of paraffin. It was found that PCMs doped with 3 wt% expanded and exfoliated graphite (EG) exhibited better thermal conductivity, similar phase change temperature and heat storage density.  相似文献   

7.
Using exfoliated graphite nanoplatelets (xGnP), paraffin/xGnP composite phase change materials (PCMs) were prepared by the stirring of xGnP in liquid paraffin for high electric conductivity, thermal conductivity and latent heat storage. xGnP of 1, 2, 3, 5 and 7 wt% was added to pure paraffin at 75 °C. Scanning electron microscopy (SEM) morphology showed uniform dispersion of xGnP in the paraffin wax. Good dispersion of xGnP in paraffin/xGnP composite PCMs led to high electric conductivity. The percolation threshold of paraffin/xGnP composite PCMs was between 1 and 2 wt% in resistivity measurement. The thermal conductivity of paraffin/xGnP composite PCMs was increased as xGnP loading contents. Also, reproducibility of paraffin/xGnP composite PCMs as continuous PCMs was manifested in results of electric and thermal conductivity. Paraffin/xGnP composite PCMs showed two peaks in the heating curve by differential scanning calorimeter (DSC) measurement. The first phase change peak at around 35 °C is lower and corresponds to the solid-solid phase transition of the paraffin, and the second peak is high at around 55 °C, corresponding to the solid-liquid phase change. The latent heat of paraffin/xGnP composite PCMs did not decrease as loading xGnP contents to paraffin. xGnP can be considered as an effective heat-diffusion promoter to improve thermal conductivity of PCMs without reducing its latent heat storage capacity in paraffin wax.  相似文献   

8.
Galactitol has a melting point of 187.41 °C and a fusion enthalpy of 401.76 J g−1. Its melting temperature is not suitable for many thermal energy storage applications although it has good latent heat storage capacity compared to the several traditional phase change materials (PCMs). The galactitol also has high supercooling degree as about 72 °C. These unfavorable properties limit the usage potential of galactitol in thermal energy storage applications. However, the phase change temperature and supercooling degree of galactitol can be reduced to a reasonable value and therefore its feasibility for energy storage systems can be increased. For this aim, in this study, galactitol hexa stearate (GHS) and galactitol hexa palmitate (GHP) were prepared as novel solid-liquid PCM by means of esterification reaction of the galactitol with palmitic acid and stearic acid. The GHP and GHS esters were characterized chemically using FT-IR and 1H NMR techniques. By using DSC analysis method, the melting temperature and latent heat value of the PCMs were determined as 31.78 °C and 201.66 J g−1 for GHP ester and 47.79 °C and 251.05 J g−1 for GHS ester. Thermal cycling test showed that the prepared PCMs had good thermal reliability after thermal 1000 melting-freezing cycles. Thermogravimetric analysis (TGA) results revealed that the PCMs have good thermal stability over their working temperatures. In addition, thermal conductivity of the prepared PCMs was increased as about 26.3% for GHP and 53.3% for GHS by addition of 5 wt.% expanded graphite. Based on all results it can be concluded that the prepared GHP and GHS esters can be considered as promising solid-liquid PCMs for many energy storage applications such as solar energy storage, indoor temperature controlling in buildings, production of smart textile and insulation clothing due to their good energy storage properties.  相似文献   

9.
Ethylene dilauroyl, dimyristoyl, and dipalmitoyl amides were synthesized as novel solid-liquid phase change materials (PCMs) via condensation of ethylene diamine with the respective carboxyl chlorides (lauroyl chloride, myristoyl chloride, and palmytoyl chloride). The synthesized ethylene dilauroyl amide (EDLA), ethylene dimyristoyl amide (EDMA), and ethylene dipalmytoyl amide (EDPA) were characterized structurally by FT-IR and 1H NMR spectroscopy techniques. Latent heats of melting and freezing determined using DSC technique were found to be 127.83 and −118.30 J/g for EDLA, 129.95 and −132.40 J/g for EDMA, and 150.66 and −145.22 J/g for EDPA, respectively. Phase change temperatures of these PCMs were ranged between 38.5 and 52.5 °C. The synthesized PCMs were tested for durability by accelerated thermal cyclings including 1000 melting/freezing cycles. Besides the thermal endurance of the PCMs were determined by TG analysis. Based on the results it was concluded that EDLA, EDMA, and EDPA compounds synthesized as novel solid-liquid PCMs have considerable amount of thermal energy storage potential in terms of suitable phase change temperatures, high latent heats, thermal reliability, and thermal stability. Moreover, the other advantages of the synthesized PCMs over the fatty acids used are better odor, low corrosivity, and low sublimation rates.  相似文献   

10.
High-chain fatty acid esters have not been investigated for their thermal properties as phase change materials (PCMs) in thermal energy storage. A series of high-chain fatty acid esters of myristyl alcohol (1-tetradecanol) were synthesized via esterification of lauric, myristic, palmitic, stearic and arachidic acids under vacuum and in the absence of any catalyst. The esterification reactions were studied by FT-IR spectroscopy. A differential scanning calorimeter (DSC) and a thermo-gravimetric analyzer (TGA) were intensively used to determine the thermal properties of the introduced thermal storage materials. The thermal properties were given in terms of phase change temperature, enthalpy, specific heat (Cp) and thermal decomposition temperature with related statistical data. The thermal reliability of the novel organic PCMs was investigated by thermal cycling with 1000 thermal cycles with respect to the thermal properties of the original synthesized PCMs. In addition to the synthesized esters, one commercial product was also investigated. The DSC analyses indicated that the melting points of the novel organic PCMs were between 38 and 53 °C with phase change enthalpy above 200 kJ/kg. The effect of chemical structure of the materials on thermal properties was also discussed. The results showed that these materials were favorable for low temperature heat transfer applications with superior thermal properties and reliability.  相似文献   

11.
A series of high-chain fatty acid esters of 1-tetradecanol (myristyl alcohol) were synthesized via esterification of 1-tridecanoic, 1-pentadecanoic, 1-heptadecanoic and 1-nonadecanoic acids under vacuum and in the absence of catalyst. The esterification reactions were controlled by FT-IR spectroscopy. Differential scanning calorimeter (DSC) and thermo-gravimetric analyzer (TGA) were intensively used to determine the thermal properties of the presented novel organic phase change materials (PCM). The thermal properties were given in terms of phase change temperature, enthalpy, specific heat (Cp) and thermal decomposition temperature with related statistical calculations. The thermal reliability of the synthesized PCMs, which is an important property for utilization, was determined via measuring the change in thermal properties after 1000 thermal cycles. The DSC analyses indicated that the melting points of the novel organic PCMs were between 40 and 50 °C with phase change enthalpy above 200 kJ/kg. The results showed that these thermal storage materials were favorable for low temperature heat transfer applications with superior thermal properties and reliability among the known PCMs.  相似文献   

12.
Organic and inorganic phase change materials(PCMs) are considered potential materials for thermal energy storage(TES) with different phase change characteristics. In this study, a novel organic-inorganic composite phase change material(PCM) called disodium hydrogen phosphate dodecahydrate-lauric-palmitic acid(D-LA-PACM) was prepared. Expanded graphite(EG) was selected as the support material, and the novel organic-inorganic form-stable PCM called D-LA-PAPCM/EG was prepared using the vacuum adsorption method. Differential scanning calorimetry, Fourier transform infrared spectroscopy, X-ray diffraction, leakage testing, melting and solidification cycle testing, thermal conductivity testing, scanning electron microscopy observation of the micromorphology, and other characterization methods were used to study the microstructure and morphology, thermal physical parameters, thermal conductivity, stability of the PCMs, and the comprehensive material properties of D-LA-PAPCM under the composite action of EG. Results indicated that the melting and freezing temperatures and latent heats of D-LA-PAPCM/EG were measured to be 31.6℃ and 34.3℃ and 142.9 and 142.8 J/g, respectively. Although some of the lauric-palmitic acid(LA-PA) and disodium hydrogen phosphate dodecahydrate(DHPD) separated in the multiple porous structures of EG after 1000 cycles, they could still absorb and release latent heats independently, with D-LA-PAPCM/EG still exhibiting good thermal stability. The thermal conductivity of D-LA-PAPCM/EG was 1.361 W/(m·K). Therefore, the material and thermal properties of the prepared D-LA-PAPCM/EG indicate that it could be well used as a feasible material for energy-saving phase change floor units in indoor TES systems.  相似文献   

13.
Latent heat storage (LHS) can theoretically provide large heat storage density and significantly reduce the storage material volume by using the material’s fusion heat, Δhm. Phase change materials (PCMs) commonly suffer from low thermal conductivities, being around 0.4 W m−1 K−1 for inorganic salts, which prolong the charging and discharging period. The problem of low thermal conductivity is a major issue that needs to be addressed for high temperature thermal energy storage systems. Since porous materials have high thermal conductivities and high surface areas, they can be used to form composites with PCMs to significantly enhance heat transfer. In this paper, the feasibility of using metal foams and expanded graphite to enhance the heat transfer capability of PCMs in high temperature thermal energy storage systems is investigated. The results show that heat transfer can be significantly enhanced by both metal foams and expanded graphite, thereby reducing the charging and discharging period. Furthermore, the overall performance of metal foams is superior to that of expanded graphite.  相似文献   

14.
To make better use of solar energy, lauric acid/expanded graphite (LA/EG) composite phase change materials (PCMs) were synthesized to collect and store solar energy as latent heat thermal energy. The results of thermal characteristics show that when the mass fraction of EG is 5%, 10%, and 15%, the latent heat of LA/EG is 164.5, 156.9, and 148.0 J/g, and the thermal conductivity is 2.73, 7.98, and 10.54 W/(m·K). Leakage test shows that LA/EG PCMs with EG mass fraction of 10% and 15% are form stable after phase change. One thousand thermal cycles prove good thermal reliability of LA/EG. TG analysis indicates LA/EG PCMs have good thermal stability within operating temperature range. The Ultraviolet-visible spectra reveal that the absorbance of LA/EG composite PCMs would increase as the mass fraction of EG increases. Photothermal conversion experiment results indicate that the photothermal conversion efficiency of LA/EG composite PCMs increases as the mass fraction of EG increases, and the efficiency can reach 95% when the mass fraction of EG is 15%. Moreover, it was also found that the process of photothermal conversion can be accelerated with stronger illumination intensity or smaller heat transfer size. All the results show that the prepared LA/EG PCMs can convert solar energy into thermal energy and store it in the form of latent heat at the same time, which indicates it has promising prospect in the application of solar energy conversion and storage.  相似文献   

15.
Composite phase change materials (PCMs) based on reduced graphene oxide/expanded graphite (rGO/EG) aerogel were prepared by hydrothermal self-assembly and impregnation method. The morphology, chemical structure, thermal properties, and shape-stability of the composite PCMs based on rGO/EG aerogel were examined. The results show that rGO sheets form a three-dimensional (3D) network structure and EG particles are attached to rGO sheets and uniformly interspersed in the aerogel. The oxygen-containing functional groups remaining in rGO/EG aerogel promote heterogeneous crystallization of paraffin, leading to increased latent heat. The 3D thermally conductive pathway provided by rGO/EG aerogel improves the composite PCM's thermal conductivity up to 0.79 W·m−1·K−1, which is about 4 times of that of pure paraffin. The leakage of composite PCMs is remarkably improved at very high percentage of paraffin. Simulative light-thermal experiments reveal that the composite PCMs have the ability of conversion and storage of light-thermal energy. In short, 3D network structure of rGO, with the aid of EG, endows the composite PCMs with improved thermal properties, good shape-stability, and light-thermal storage performance.  相似文献   

16.
Conventional phase change materials (PCMs) are already well known for their high thermal capacity and constant working temperature for thermal storage applications. Nevertheless, their low thermal conductivity (around 1 W m−1 K−1) leads to low and decreasing heat storage and discharge powers. Up to now, this major drawback has drastically inhibited their possible applications in industrial or domestic fields. The use of graphite to enhance the thermal conductivity of those materials has been already proposed in the case of paraffin but the corresponding applications are restricted to low-melting temperatures (below 150 °C). For many applications, especially for solar concentrated technologies, this temperature range is too low. In the present paper, new composites made of salts or eutectics and graphite flakes, in a melting temperature range of 200-300 °C are presented in terms of stability, storage capacity and thermal conductivity. The application of those materials to thermal storage is illustrated through simulated results according to different possible designs. The synergy between the storage composite properties and the interfacial area available for heat transfer with the working fluid is presented and discussed.  相似文献   

17.
The influence of expanded graphite (EG) and carbon fiber (CF) as heat diffusion promoters on thermal conductivity improvement of stearic acid (SA), as a phase change material (PCM), was evaluated. EG and CF in different mass fractions (2%, 4%, 7%, and 10%) were added to SA, and thermal conductivities of SA/EG and SA/CF composites were measured by using hot-wire method. An almost linear relationship between mass fractions of EG and CF additives, and thermal conductivity of SA was found. Thermal conductivity of SA (0.30 W/mK) increased by 266.6% (206.6%) by adding 10% mass fraction EG (CF). The improvement in thermal conductivity of SA was also experimentally tested by comparing melting time of the pure SA with that of SA/EG and SA/CF composites. The results indicated that the melting times of composite PCMs were reduced significantly with respect to that of pure SA. Furthermore, the latent heat capacities of the SA/EG and SA/CF (90/10 wt%) composite PCMs were determined by differential scanning calorimetry (DSC) technique and compared with that of pure SA. On the basis of all results, it was concluded that the use of EG and CF can be considered an effective method to improve thermal conductivity of SA without reducing much its latent heat storage capacity.  相似文献   

18.
As a phase change material (PCM), acetamide (AC) can be a potential candidate for energy storage application in the active solar systems. Its utilization is however hampered by poor thermal conductivity. In this work, AC/expanded graphite (EG) composite PCM with 10 wt% (mass fraction) EG as the effective heat transfer promoter was prepared; its thermal properties were studied and compared with those of pure AC. Transient hot-wire tests showed that the addition of 10 wt% EG led to about five-fold increase in thermal conductivity. Investigations using a differential scanning calorimeter revealed that the melting/freezing points shifted from 66.95/42.46 °C for pure AC to 65.91/65.52 °C for AC/EG composite, and the latent heat decreased from 194.92 to 163.71 kJ kg−1. In addition, heat storage and retrieval tests in a latent thermal energy storage unit showed that the heat storage and retrieval durations were reduced by 45% and 78%, respectively. Further numerical investigations demonstrated that the less improvement in heat transfer rate during the storage process could be attributed to the weakened natural convection in liquid (melted) AC because of the presence of EG.  相似文献   

19.
In the present work, three fatty acid eutectics of capric acid (CA)–lauric acid (LA), capric acid–palmitic acid (PA), and capric acid–stearic acid (SA) were prepared through melt-blending followed by ultrasonication and were investigated as model phase change materials (PCMs); for comparison, the individual fatty acid of CA was also studied. The DSC measurements indicated that the phase transition temperatures of fatty acid eutectics were lower than those of individual fatty acid of CA. Thereafter, the polyamide 6 (PA6) nanofibers and PA6/EG composite nanofibers with 10 wt.% expanded graphite (EG) were prepared by electrospinning; and then composite PCMs with fatty acid eutectics absorbed in and/or supported by the overlaid mats of electrospun nanofibers (e.g., PA6 and PA6/EG) were explored for storage and retrieval of thermal energy. Influences of the EG on structural morphologies, thermal energy storage properties and thermal energy storage/retrieval rates of composite PCMs were respectively characterized by scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and measurement of melting/freezing times. The results indicated that the additions of EG caused the interfaces between fatty acid eutectics and PA6 nanofibrous mats to become more illegible; increased the absorption capacity of fatty acid eutectics within nanofibrous mats. The enthalpies of melting and crystallization of composite PCMs with EG were higher than those of the corresponding composite PCMs without EG, whereas there were no appreciable changes on the phase transition temperatures. The EG improved thermal energy storage/retrieval rates of composite PCMs were also confirmed by comparing the melting/freezing times of CA/PA6/EG and CA–SA/PA6/EG with those of CA/PA6 and CA–SA/PA6, respectively. The results from the SEM observation showed that composite PCMs had no or little variations in shape and surface morphology after heating/cooling processes.  相似文献   

20.
Phase change materials (PCMs) can be incorporated with building materials to obtain novel form-stable composite PCM which has effective energy storage performance in latent heat thermal energy storage (LHTES) systems. In this study, capric acid (CA)-myristic acid (MA) eutectic mixture/vermiculite (VMT) composite was prepared as a novel form-stable PCM using vacuum impregnation method. The composite PCM was characterized using scanning electron microscope (SEM) and Fourier transformation infrared (FT-IR) analysis technique. Thermal properties and thermal reliability of the composite PCM were determined by differential scanning calorimetry (DSC) analysis. The CA-MA eutectic mixture could be retained by 20 wt% into pores of the VMT without melted PCM seepage from the composite and therefore, this mixture was described as form-stable composite PCM. Thermal cycling test showed that the form-stable composite PCM has good thermal reliability and chemical stability although it was subjected to 3000 melting/freezing cycling. Thermal conductivity of the form-stable CA-MA/VMT composite PCM was increased by about 85% by introducing 2 wt% expanded graphite (EG) into the composite. The increase in thermal conductivity was confirmed by comparison of the melting and freezing times of the CA-MA/VMT composite with that of CA-MA/VMT/EG composite. The form-stable PCM including EG can be used as energy absorbing building material such as lightweight aggregate for plaster, concrete compounds, fire stop mortar, and component of interior fill for wallboards or hollow bricks because of its good thermal properties, thermal and chemical reliability and thermal conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号