首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies indicated that there is a separate hypothalamic control of follicle-stimulating hormone (FSH) release distinct from that of luteinizing hormone (LH). An FSH-releasing factor (FSHRF) was purified from rat and sheep hypothalami, but has not been isolated. We hypothesized that FSHRF might be an analogue of mammalian luteinizing hormone-releasing hormone (m-LHRH) and evaluated the activity of many analogues of m-LHRH and of the known LHRHs found in lower forms. Here we demonstrate that lamprey (l) LHRH-III has a potent, dose-related FSH- but not LH-releasing action on incubated hemipituitaries of male rats. l-LHRH-I on the other hand, had little activity to release either FSH or LH. m-LHRH was equipotent to l-LHRH-III to release FSH, but also had a high potency to release LH in contrast to l-LHRH-III that selectively released FSH. Chicken LHRH-II had considerable potency to release both LH and FSH, but no selectivity in its action. Salmon LHRH had much less potency than the others tested, except for l-LHRH-I, and no selectivity in its action. Because ovariectomized, estrogen, progesterone-treated rats are a sensitive in vivo assay for FSH- and LH-releasing activity, we evaluated l-LHRH-III in this assay and found that it had a completely selective stimulatory effect on FSH release at the two doses tested (10 and 100 pmols). Therefore, l-LHRH-III is a highly potent and specific FSH-releasing peptide that may enhance fertility in animals and humans. It may be the long sought after m-FSHRF.  相似文献   

2.
Luteinizing hormone releasing hormone (LHRH) stimulates the development of cellular FSH immunoreactivity in the perinatal hamster adenohypophysis. Because neuropeptide Y (NPY) can act directly on rat adenohypophysial cells to stimulate FSH and LH release and potentiate the stimulatory effect of LHRH on FSH and LH release, we investigated the effects of NPY alone and in combination with a low, ineffective dose of LHRH on inducing cellular FSH immunoreactivity in the neonatal hamster adenohypophysis. Neonatal female pituitary glands were grafted beneath the right renal capsules of hypophysectomized-ovariectomized adult hamster hosts with a catheter implanted in the external jugular vein. After treatment, hosts were decapitated and graft tissue was stained for FSH and LH immunoreactivity. The mean percentage of adenohypophysial cells that stained for FSH was low (2.8%) in grafts in hosts infused continuously with heparinized saline vehicle for 7 days. In other hosts, peptides were pulsed through the catheter every 12 h for 7 days. The mean percentage of FSH cells also was low after pulsing 6 ng LHRH or 2 micrograms NPY but increased substantially when the two peptides were pulsed simultaneously. No differences in the mean percentage of LH cells existed between any of the groups. The results demonstrate that NPY and LHRH can synergize to induce cellular FSH immunoreactivity in the neonatal female hamster.  相似文献   

3.
Nitric oxide mediates sexual behavior in female rats   总被引:1,自引:0,他引:1  
Nitric oxide (NO), an active free radical formed during the conversion of arginine to citrulline by the enzyme NO synthase (NOS), mediates vasorelaxation, cytotoxicity, and neurotransmission. Neurons containing NOS (NOergic) are located in the hypothalamus. These NOergic neurons control the release of several hypothalamic peptides. Release of NO from these NOergic neurons stimulates pulsatile release of luteinizing hormone-releasing hormone (LHRH) in vivo and LHRH release in vitro. LHRH not only induces LH release, which induces ovulation, but also facilitates female sexual behavior. Sexual behavior can be induced reliably in estrogen-primed ovariectomized female rats by progesterone (P). This behavior consists of proceptive behavior to attract the male and the assumption of a clear characteristic posture, lordosis, when mounted by the male. To ascertain the role of NO in the control of sexual behavior in female rats, an inhibitor of NOS, NG-monomethyl-L-arginine was microinjected into the third cerebral ventricle (3V) of conscious, ovariectomized, estrogen-primed rats with indwelling cannulae. NG-Monomethyl-L-arginine (10-1000 micrograms) prevented P-facilitated lordosis when administered intracerebroventricularly into the 3V, 20 min prior to the 3V injection of P. NG-Monomethyl-D-arginine, which does not inhibit NOS, did not inhibit lordosis under the same experimental conditions. Microinjection into the 3V of sodium nitroprusside (SNP), which spontaneously releases NO, facilitated lordosis in estrogen-primed rats in the absence of P. The facilitation of lordosis induced by either P or SNP was prevented by intracerebroventricular injection of hemoglobin, which binds NO. Lordosis facilitated by P or SNP was blocked by injection of LHRH antiserum into the 3V. The results are interpreted to mean that the P-facilitated lordosis response is mediated by LHRH release. Furthermore, since NO release from SNP also facilitates lordosis in the absence of P and this response could be blocked by LHRH antiserum, we conclude that P brings about the release of NO, which stimulates LHRH release that facilitates lordosis. Thus, the results indicate that NO induces LHRH release and that LHRH then plays a crucial role in mediation of sexual behavior in the female rats.  相似文献   

4.
It has been suggested that hypothalamic median eminence (ME) might be a control site for luteinizing hormone-releasing hormone (LHRH) release. Thus, stimulatory and/or inhibitory inputs acting at this site might be involved in regulating LHRH release from the ME and, therefore, luteinizing hormone (LH) release from the anterior pituitary. Since a role for neuropeptide Y (NPY) on LH release has been suggested, we have hypothesized that NPY might act in the ME to control preovulatory LHRH release in hens. To examine this possibility we have determined: (a) the immunocytochemical distribution of LHRH and NPY in the ME of the hen, (b) the basal and NPY-stimulated release of LHRH in vitro from the ME of hens undergoing a natural or a premature preovulatory surge of LH, and (c) the tissue content of LHRH and NPY in microdissected MEs, at various times before and during a natural or a premature preovulatory surge of LH. A potential role for NPY on LHRH release in the ME is suggested for the following reasons. (a) There are opportunities for synaptic interactions between NPY and LHRH-containing axons at this site. LHRH-containing cell bodies localized in the anterior hypothalamus/medial preoptic area project to the ME. NPY-containing perikarya, concentrated in the ventromedial aspect of the arcuate nucleus, might contact LHRH processes going to the ME and/or might themselves send axons to the ME, (b) Addition of NPY to the incubation media increases LHRH release from microdissected ME tissue of hens killed at the time of the natural preovulatory surge of LH, but not in hens killed 7 h before the occurrence of this surge. However, the stimulatory effect of NPY on LHRH release can be induced at this latter time when a premature LH surge is elicited. While the natural preovulatory surge of LH occurs 4 h before the second ovulation in a sequence (C2 ovulation), administration of progesterone (P4) 10-14 h before the expected natural C2 ovulation advances the natural LH surge by 7-8 h. Thus, NPY might act as a physiological stimulus of LHRH release at the ME during the preovulatory surge of LH. This is suggested since in vitro basal LHRH release from denervated ME tissue does not change before and during the natural or the premature LH surge. Therefore, preovulatory release of LHRH in vivo might be under a continuous drive from stimulatory inputs to the LHRH neuron and NPY might be one of these stimulating factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Ethanol (EtOH) suppression of the hypothalamic-pituitary-gonadal (HPG) axis results in broad reproductive malfunction. In the HPG axis, the suppressive effects of EtOH are manifested by decreased serum testosterone, reduced testicular luteinizing hormone (LH) receptor numbers, lowered serum LH and pituitary beta-LH mRNA levels (in castrated animals), and impaired luteinizing hormone releasing hormone (LHRH) release from the hypothalamus. Increasing evidence has suggested that nitric oxide (NO) plays a role in regulation of the HPG axis. NO was shown to stimulate LHRH secretion from the hypothalamus and to have variable effects on LH release from the pituitary. At the gonadal level, NO is inhibitory to testosterone production. NO may directly inhibit some testicular steroidogenic enzymes. To investigate the effect of EtOH, NO, and their interaction on the male HPG axis, three NO synthase (NOS) inhibitors, N(G)-nitro-L-arginine methyl ester, N(G)-nitro-L-arginine, and 7-nitro indazole were used to study overall HPG function in the presence and absence of EtOH. Animals were given intraperitoneal injections of saline, EtOH, various NOS inhibitors, or EtOH, along with NOS inhibitors 2 hr before sacrifice. Serum testosterone and LH concentrations, pituitary beta-LH mRNA levels, hypothalamic LHRH mRNA levels, and LHRH content were determined. It was found that blocking NOS by these NOS inhibitors prevented EtOH-induced suppression of testosterone and, in some cases, serum LH. However, this was not accompanied by concurrent changes with NOS blockade on LHRH mRNA, hypothalamic pro-LHRH or LHRH content or pituitary LH beta mRNA levels. It appears that the protective effect of NOS blockade was largely, although not completely, due to a direct effect at the gonadal level.  相似文献   

6.
In these studies we examined the temporal effects of intracerebroventricular (i.c.v.) infusions of norepinephrine (NE) on plasma LH and on LHRH mRNA levels in the organum vasculosum of the lamina terminalis (OVLT) and in neurons located in the rostral (r), middle (m) and caudal (c) preoptic areas (POA) of ovariectomized, estrogen-treated rats. Thereafter, we compared these responses to those which occur in androgen-sterilized rats (ASR). NE infusions not only increased plasma LH concentrations but within 1 h after NE, LHRH mRNA levels also were increased significantly in the OVLT and rPOA but not in the mPOA or cPOA. By 4 h, these message levels still were elevated in the OVLT and rPOA and they now also were significantly higher than control values in the mPOA and cPOA. While NE also increased LH secretion in ASR, the plasma LH concentrations obtained were markedly blunted compared to control values. Moreover, NE infusions did not alter single cell levels of LHRH mRNA in any region of the rostral hypothalamus. Previously, we have reported that morphine (s.c.) markedly amplifies NE-induced LH release and questioned whether these responses are accompanied by concomitant augmented increases in LHRH mRNA levels. Morphine alone did not affect basal LHRH mRNA or plasma LH levels. However, when rats were pretreated with morphine (-15 min) and NE was infused i.c.v. at 0 time, significant amplification of LH release occurred but, unexpectedly, morphine completely blocked NE-induced increases in LHRH mRNA levels in all of the neurons we examined. Morphine also amplified LH release in ASR but these responses were significantly less than those obtained in control rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Young cats, when chronically infected with feline leukemia virus (FeLV), developed feline acquired immune deficiency syndrome (FAIDS). The syndrome was associated with a sequence of dysfunctions in the hypothalamic-pituitary-gonadal (HPG) and the immune system, manifested in the reduction of luteinizing hormone-releasing hormone (LHRH), follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone in blood plasma. The average FSH and LH (in plasma or lymphocyte), testosterone, and LHRH concentrations in the 20 FeLV-infected cats were measured by radioimmunoassay. The results were compared with those of the 12 control cats that were not FeLV-infected. Four weeks after infection, the plasma LHRH concentration in the infected cats showed a 43% reduction. Five to six weeks after infection, the content of FSH and LH in lymphocyte was reduced by 50% and 28%, respectively, whereas, the plasma FSH and LH was reduced by 52% and 42%, respectively. A significant reduction in testosterone content was detected at Week 11 of infection. The onset of the immuno- and neuroendocrine dysfunctions in FAIDs cats followed this sequence: hypothalamus, lymphocyte, pituitary, adrenal gland, and gonads. Indirect immunofluorescence assay showed the presence of FeLV cytoplasmic antigens in the fibers of the hypothalamic preoptic region and the Leydig cells. The possible causal relationship between the dysfunction of the lymphocyte and HPG systems and the presence of FeLV was discussed.  相似文献   

8.
9.
Accumulating evidence suggests that hypothalamic luteinizing hormone-releasing hormone (LHRH) and thyrotropin-releasing hormone (TRH) are two hypophysiotropic factors which modulate the immune response. The aim of the present study was to determine the in vivo effects of an intravenous bolus of LHRH and TRH on plasma interferon (IFN)-gamma production in five normoprolactinemic women with irregular menstrual cycles. We also determined prolactin (PRL), thyrotropin (TSH), follicle stimulating hormone (FSH), and luteinizing hormone (LH) levels before and after intravenous administration of LHRH and TRH. The results demonstrate that intravenous bolus of LHRH/TRH increases plasma IFN-gamma levels, with the maximum response 45 min after in vivo administration of hypothalamic peptides and after peak levels of adenohypophyseal hormones (PRL: 15 min; TSH: 30 min; FSH: 30 min; LH: 30 min). In order to investigate a possible direct action of hypothalamic hormones on immune cells, we also evaluated, in the same subjects, the influence of LHRH and TRH on IFN-gamma production by human peripheral blood mononuclear cells (PBMCs), collected before the intravenous administration of the peptides and stimulated in vitro with bacterial superantigen staphylococcal enterotoxin A (SEA) and concanavalin A (Con A). LHRH and TRH, separately and together, significantly enhanced in vitro IFN-gamma production by SEA- and ConA-activated PBMCs. The present results suggest that hypothalamic peptides (LHRH and TRH) directly, and/or indirectly pituitary hormones (PRL, TSH, FSH, and LH) or IL-2, have stimulatory effect on IFN-gamma producing cells and are further evidence of interactions between the neuroendocrine and immune systems.  相似文献   

10.
The effects on LH release of infusing luteinizing hormone-releasing hormone (LHRH 80 mug/20 min) into the third ventricle, the pituitary, and the peripheral circulation were compared in spayed rhesus monkeys. Within 30 min after iv administration, serum LH concentrations increased to twice to preinfusion levels, and by 120 min declined to original values. Intraventricular or intrapituitary infusions of LHRH resulted in similar LH increments, but the peaks occurred somewhat later (70 to 90 min) and the elevations persisted beyond 200 min. Estradiol-17beta (E2) administered by a sc silastic capsule caused a 5-fold increase in serum E2 within 1 h and reduced serum LH levels by 65% within 4 h. The LH release caused by intrapituitary LHRH was significantly suppressed by maintaining for 72 h E2 concentrations near 100 pg/ml, a level inadequate for stimulating an LH surge. A comparable E2 treatment before intraventricular infusion of LHRH, however, did not inhibit LH release. This difference between the effects of intrapituitary and intraventricular LHRH was demonstrable only in E2-treated monkeys. Moreover, the release of LH after intraventricular infusion of LHRH in E2-treated females was blocked (P less than 0.001) by a single iv injection (90 min before LHRH) of haloperidol (1 mg/kg BW) or phentolamine (5 mg/kg), but was not altered by phenoxybenzamine (3 mg/kg) or propranolol (5 mg/kg). Without E2 pretreatment, LH release after intraventricular LHRH was enhanced by each drug. Phentolamine, injected into both E2- and non-E2-treated monkeys 90 min before an intrapituitary infusion of LHRH had no demonstrable effects on the patterns of serum LH. Our interpretation of these data is that E2 at a concentration below the level that triggers an LH surge has a dual action on LHRH-induced LH release in monkeys: an inhibitory effect exerted directly on the pituitary and a stimulatory effect on the brain. Furthermore, the paradoxical effects of the drugs with and without E2 are due to the involvement of two distinct neuronal systems. The postulated neural effects of both E2 and these drugs can be explained either by an increase in the quantity of injected or secreted LHRH which ultimately binds to LH-secreting cells or by the release of additional endogenous LH-stimulating agents together with ventricular LHRH.  相似文献   

11.
Bilateral implants of atropine sulphate were placed in various loci in the brain or into the anterior pituitary in male rats and the effects of the implants on the postcastration rise in plasma FSH and LH was determined. The increase in both gonadotropins at 16 hr after castration still occurred in animals with implants in the cerebral cortex. The postcastration rise of both FSH and LH was blocked by atropine implants in the anterior, middle, or posterior hypothalamus but was not interfered with by control implants of cholesterol. Bilateral implants of either cholesterol or atropine into the anterior pituitary failed to alter the increase in plasma LH following castration but both types of implants interfered with the postcastration rise in FSH, possibly because of trauma to the pituitary from the cannulae. It is suggested that hypothalamic cholinergic synapses may play a role in stimulating the increased LHRH release which induces the postcastration rise in gonadotropins.  相似文献   

12.
The ferret is a reflex-ovulating species in which receipt of an intromission induces a prolonged (+/- 12 h) preovulatory LH surge in the estrous female. This LH surge is probably stimulated by a large release of GnRH from the mediobasal hypothalamus (MBH). In Exp 1 we asked whether GnRH messenger RNA (mRNA) levels increase in response to mating so as to replenish the MBH GnRH stores needed to sustain the preovulatory LH surge. Estrous females were killed 0, 0.25, 0.5, 1, 3, 6, 14, or 24 h after the onset of a 10-min intromission from a male. Coronal brain sections ranging from the rostral preoptic area caudally to the posterior hypothalamus were processed for in situ hybridization using a 35S-labeled oligoprobe complementary to the human GnRH-coding region. We found no evidence of increased MBH GnRH mRNA levels during the ferret's mating-induced preovulatory LH surge. Instead, the number of GnRH mRNA-expressing cells dropped significantly in the arcuate region beginning 6 h after onset of intromission and remained low thereafter. Furthermore, cellular GnRH mRNA levels decreased in the arcuate region toward the end of the preovulatory LH surge. In Exp 2 we asked whether ovarian hormones regulate MBH GnRH mRNA levels in the female ferret. Ovariectomy of estrous females significantly reduced the number of GnRH mRNA-expressing cells in the arcuate region. This decrease was probably not due to the absence of circulating estradiol. Gonadally intact anestrous females had levels of MBH GnRH mRNA similar to those in estrous females even though plasma estradiol levels were equally low in anestrous females and ovariectomized females. Ovarian hormones other than estradiol may stimulate MBH GnRH mRNA levels in anestrous and estrous females.  相似文献   

13.
Several cytokines produced by immune cells act within the hypothalamus and/or on the pituitary to produce the pattern of pituitary hormone secretion that characterizes infection. Granulocyte-macrophage colony stimulating factor (GMCSF) was first described as a hematopoietic cytokine; however, its synthesis is also stimulated during infection, and it has been found in glia in the brain. Previous research indicates that interleukin-1 inhibits release of luteinizing hormone-releasing hormone (LHRH) both in vivo and in vitro. In the present study, we determined that GMCSF inhibited the release of LHRH in vitro and evaluated the mechanisms involved. After a 1-hour preincubation in Krebs-Ringer bicarbonate glucose buffer (KRB), medial basal hypothalamic explants were incubated in KRB together with recombinant murine GMCSF for 0.5 h in a Dubnoff metabolic shaker (50 cycles/min) in an atmosphere of 95% O2/5% CO2. LHRH release into the media was determined by radioimmunoassay. At concentrations of 10(-12) and 10(-11) M, GMCSF significantly inhibited LHRH release. There was a U-shaped dose-response curve and LHRH release was not inhibited at lower or higher cytokine concentrations. The inhibition was specific since it was completely blocked by GMCSF antiserum. Since sodium nitroprusside (NP; 300 microM), a releaser of nitric oxide (NO), stimulates LHRH, presumably by acting within the LHRH neurons, we examined the effect of GMCSF (10(-11) M) on NP-induced LHRH release. It completely suppressed NP-induced release of LHRH. Bicuculline (10(-5) M), a gamma-aminobutyric acid (GABA) receptor antagonist, partially reversed the inhibitory effects of GMCSF on LHRH release. This dose completely reversed the suppression of LHRH release induced by GABA. The present results indicate that the inhibitory effects of GMCSF on LHRH release are partially caused by blockade of NO-induced LHRH release by its activation of GMCSF receptors on GABAergic neurons. The stimulated release of GABA acts on the GABA-a receptors on the LHRH terminals to inhibit their response to NO. At the end of the experiment, NO synthase (NOS) activity was measured in the tissue homogenate by the citrulline method. NOS activity was highly significantly reduced by GMCSF (10(-11) M) indicating that part of its suppressive action on LHRH release is mediated by reduction in NOS activity in the medial basal hypothalamus.  相似文献   

14.
The effects were studied of in vivo administration of the new opioid antagonist-estrogen hybrid, naltrexone-estrone azine (EH-NX), on subsequent luteinizing hormone-releasing hormone (LHRH)-stimulated luteinizing hormone (LH) release by the pituitary gland in vitro. It is well known that administration of estrogen exerts negative and positive effects on the pituitary LH response to LHRH, respectively after short-term and long-term treatment. Rats were injected subcutaneously with either 17 beta-estradiol-3-benzoate (EB), EH-NX or oil on days 18 and 19 (long-term treatment), and on day 21 (short-term treatment) following ovariectomy. Twenty minutes later the animals were killed and the pituitary glands were incubated in the presence of LHRH (1000 ng/ml) for 4 h. Whereas short-term treatment with EB on day 21 did not affect LH release in vitro, EH-NX significantly decreased the pituitary LH response to LHRH in oil pretreated rats. This inhibitory effect was partially blocked by the opioid antagonist naltrexone. After long-term EB or EH-NX, followed by short-term oil treatment, the pituitary LH response to LHRH was increased considerably, compared to the long-term oil controls. These observations demonstrate that the opioid antagonist estrogen hybrid EH-NX has estrogenic activity at the level of the pituitary gland. This hybridized drug is more effective in time than EB and an equimolar amount of EH (estrone hydrazone) to induce the negative estrogenic effect.  相似文献   

15.
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP) are hypothalamic peptides sharing considerable sequence homology which are postulated to be hypophysiotrophic releasing factors. When infused into man, PACAP has no effect on anterior pituitary hormone levels, while VIP causes a significant increase in circulating prolactin concentrations. However, PACAP has recently been shown to augment the release of LH and FSH in response to LHRH in rat anterior pituitary cell culture. In order to ascertain if either peptide has a similar effect in man, PACAP and VIP were infused at 3.6 pmol/kg per min into six healthy male volunteers, and an LHRH test was performed 30 min after the infusion was commenced. Infusion of PACAP did not alter the gonadotrophin response to LHRH significantly. However, VIP augmented the release of LH significantly, both during the infusion and for 30 min thereafter, although there was no effect on FSH release. Thus VIP, but not PACAP, potentiates the release of LH after LHRH injection in man.  相似文献   

16.
Inhibitory and excitatory amino acid neurotransmitters have been suggested to participate in the feedback actions of estradiol (E2) on LH secretion. In the rat estrogen-receptive neurons have been demonstrated in the preoptic/anterior hypothalamic area (POA) and mediobasal hypothalamus/median eminence (MBH) and many of these neurons utilize gamma-aminobutyric acid (GABA) as neurotransmitter. The actions of excitatory amino acids (EAA) differ in ovariectomized (ovx) and ovx E2-substituted rats indicating that EAAs also participate in the positive feedback action of E2 on LH release. However, little information is available as to whether in vivo these transmitters exert their effects in the POA, where most of the GnRH perikarya are located, or in the MBH, i.e. at the nerve terminals. Therefore we conducted push pull cannula perfusions to compare the release rates of GABA, aspartate (ASP) and glutamate (GLU) in the MBH and POA. A subcutaneous implant of a silastic tube containing E2 resulted in LH surges in the afternoon of all treated animals. Prior to and during this LH surge the MBH release rates of neither GABA nor ASP nor GLU were significantly altered. In contrast, a conspicuous drop in preoptic GABA release occurred prior to and during the time of estrogen-induced LH surges and this was accompanied by enhanced preoptic secretion of ASP and GLU. In conclusion, we present the first data about amino acid release in the MBH during the E2-induced LH surge. Since only in the POA the LH surge is associated with changes in amino acid release, it appears that both inhibitory and excitatory amino acids act at the level of the GnRH cell bodies and/or dendrites and not on GnRH nerve terminals to mediate the feedback mechanism of E2 on LH release.  相似文献   

17.
Olfactory information processed by the vomeronasal system is reported to influence reproductive functions in a variety of mammals. The present studies were designed to determine if male-associated cues affect the luteinizing hormone-releasing hormone (LHRH) neuronal system, and, if so, to determine the extent to which these cues are processed by the vomeronasal organ (VNO). Ovariectomized rats underwent VNO removal (VNX) or sham surgery (VN-Sham). Forty-eight hours after estrogen priming (5 micrograms), they were subjected to one of the following treatments: repeated mating, repeated exposure to male-soiled bedding or repeated exposure to clean bedding. In animals treated for 180 min, coronal brain sections were double labelled for Fos protein and LHRH. An intense Fos immunoreactivity was induced following mating in the majority of LHRH neurons in the VN-Sham females, whereas removal of the VNO significantly suppressed the mating-induced Fos staining. Exposure of female rats to male-soiled bedding or clean bedding did not induce appreciable Fos immunoreactivity in LHRH neurons. Following 90 min of mating or exposure to bedding, blood samples were assayed for luteinizing hormone (LH). Mating stimulated the release of LH in VN-Sham females, while the removal of the VNO significantly suppressed the mating-induced LH release. Exposure of the females to male-soiled bedding or clean bedding did not induce an LH surge. The present results demonstrate that male-originating sensory cues (i.e. repeated mating) can influence the LHRH neuronal system, as evidenced by the presence of Fos immunoreactivity in LHRH cell bodies, and indicate that this effect is mediated through the VNO to a certain extent.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
It is commonly accepted that at least in girls puberty starts when a minimum level of body mass or a certain amount of body fat are present. However the precise signal by which adipose stores inform the hypothalamus of the degree of energetic reserves is unknown. Leptin is a hormone produced by the adipocytes to regulate food intake and energy expenditure at the hypothalamic level. To understand whether leptin is the adipose tissue signal that allows puberty, 789 normal children of both sexes, age 5-15 yr, were transversally studied. Leptin levels, as well as gonadal and gonadotropins, levels, were analyzed in addition to the determination of auxological parameters. In an age-related analysis, leptin levels in girls rose from 5-15 yr (from 4.3 +/- 0.4 to 8.5 +/- 0.9 micrograms/L) in parallel with body weight. Boys always had lower leptin levels than girls (3.3 +/- 0.3 micrograms/L at 5 yr), but they rose in parallel with weight until 10 yr (5.3 +/- 0.7 micrograms/L), when a striking decrease was observed until 15 yr (3.0 +/- 0.3 micrograms/L). In girls, leptin was the first hormone to rise followed by FSH and later by LH and estradiol. A similar pattern occurred in boys, despite the fact that leptin dropped after 10 yr when testosterone rises. Divided into three pubertal stages, i.e. P1 = prepuberty, P2 = early puberty, and P3 = overt puberty, in girls the four hormones rose progressively from P1 to P3, but from P2 to P3 the present increment was greater for LH and estradiol. In boys, leptin decreased from P1 to P3, whereas FSH, LH, and testosterone rose. The age-related changes were not caused by adiposity variations, because data did not change when subtracting values of children over 97% of standard deviation score of body mass index. In conclusion: 1) leptin appears to increase in both boys and girls before the appearance of other reproductive hormones related to puberty; 2) leptin levels in boys are always lower than in girls, although they increase with age until the age 10 yr; 3) leptin in boys declines about the time testosterone increases. Leptin may well be a permissive factor for the initiation of pubertal events.  相似文献   

19.
Leptin, an adipocyte hormone, is a trophic factor for the reproductive system; however, it is still unknown whether there is a dynamic relation between fluctuations in circulating leptin and hypothalamic-pituitary-ovarian (HPO) axis hormones. To test the hypothesis that fluctuations in plasma leptin concentrations are related to the levels of luteinizing hormone (LH) and estradiol, we sampled plasma from six healthy women every 7 min for 24 h during days 8-11 of the menstrual cycle. Cross-correlation analysis throughout the 24-h cycle revealed a relation between release patterns of leptin and LH, with a lag of 42-84 min but no significant cross-correlation between LH and estradiol. The ultradian fluctuations in leptin levels showed pattern synchrony with those of both LH and estradiol as determined by cross-approximate entropy (cross-ApEn). At night, as leptin levels rose to their peak, the pulsatility profiles of LH changed significantly and became synchronous with those of leptin. LH pulses were fewer, of longer duration, higher amplitude, and larger area than during the day. Moreover, the synchronicity of LH and leptin occurred late at night, at which time estradiol and leptin also exhibited significantly stronger pattern coupling than during the day. We propose that leptin may regulate the minute-to-minute oscillations in the levels of LH and estradiol, and that the nocturnal rise in leptin may determine the change in nocturnal LH profile in the mid-to-late follicular phase that precedes ovulation. This may explain the disruption of hypothalamic-pituitary-ovarian function that is characteristic of states of low leptin release, such as anorexia nervosa and cachexia.  相似文献   

20.
Leptin has been called a hormone of reproduction, and seems to link fat and fertility. It has been speculated that the neurotransmitter norepinephrine (NE) (noradrenaline), possibly via the sympathetic nervous system, may represent the afferent signal which modulates leptin release from adipocytes. The purpose of this study was to produce a state of decreased sympathetic output by using the catecholamine synthesis inhibitor alpha-methyl-para-tyrosine (AMPT), in order to study the effect of this compound on the secretion of leptin from fat cells. Ten subjects (five women and five men) received a total of 5 x 1 g doses of AMPT or 5 x 50 mg promethazine (active placebo) over a 26 h period, separated by 4-6 weeks using a randomized, double-blind, placebo-controlled, cross-over design. Blood samples for hormone measurements were obtained over 24 h (18 time points) on day 2 of each experiment. Urinary measurement of the NE metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) on study day 2 served as a marker of the effectiveness of AMPT as an inhibitor of NE synthesis. The daily excretion of this metabolite decreased from 1.56 +/- 0.22 mg in the placebo experiment to 0.53 +/- 0.1 mg in the active experiment (P < 0.05). Plasma leptin concentrations measured in the control group in women and men were similar to those reported previously in lean subjects with a body mass index < 27.5 kg/m2. Leptin concentrations in women were 3-fold higher than in men. Leptin is secreted in a circadian rhythm in both sexes with an increase of nocturnal concentrations by approximately 50%. Two-way analysis of variance reveals no significant difference in leptin secretion between the control and active groups in women and men. In summary, preliminary results do not support the hypothesis that NE represents the afferent signal from the central nervous system which modulates leptin release from adipocytes in the human. Further studies are needed to define the role of the sympathetic nervous system as well as NE in the regulation of leptin secretion and its involvement in obesity and reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号