首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
考察了载体水热处理时间对催化剂物性结构及加氢降残炭活性的影响。采用低温N2吸附-脱附、H2-程序升温还原、拉曼光谱、热重、高分辨透射电子显微镜等手段对载体和催化剂进行了表征。结果表明,随着载体水热处理时间的延长,载体的比表面积逐渐增大,平均孔径减小,表面-OH数量增加。将通过不同时间水热处理得到的载体制成催化剂后,发现随着载体水热处理时间的延长,载体表面-OH数量增加,金属与载体间的相互作用逐渐增强,从而使硫化后的催化剂活性相结构发生变化,即随着水热处理时间的延长,活性相逐渐变“小”。在高压釜中进行了催化剂的实际油品降残炭与脱硫性能评价,发现随着载体水热处理时间的延长,催化剂的降残炭和脱硫活性逐渐降低。  相似文献   

2.
中国石化石油化工科学研究院建立了新型高性价比渣油加氢催化剂NATURE制备技术平台,在此基础上根据渣油中残炭前躯物分子结构和反应特点,通过对催化剂孔结构、表面性质以及活性相结构进行设计,开发出高性价比RCS-202催化剂。中型加氢装置评价结果表明,与上一代工业剂相比,新开发的RCS-202催化剂堆密度降低20%,降残炭和脱硫的活性及稳定性明显提升。表征结果表明:与上一代催化剂相比,RCS-202催化剂孔体积和比表面积更高,硫化态催化剂中NiMoS相所占比例更高,反应后催化剂上积炭量更低,具有更高的性价比。  相似文献   

3.
采用BET、ICP、元素分析、显微共焦激光拉曼光谱及TEM等多种分析手段,对工业装置运转后的渣油加氢脱残炭催化剂进行了研究。实验结果表明,运转后的脱残炭催化剂积碳量高达24.57%(w),且积碳在催化剂径向上呈"V"型分布,更多地沉积在催化剂边缘;积碳量大及积碳在催化剂径向分布不均匀使催化剂孔径变小,扩散阻力增加,孔内活性位利用率降低;运转后的脱残炭催化剂的MoS2相变长,且层数增加,使活性位减少。为提高脱残炭催化剂的活性稳定性,应加强催化剂的抗积碳性能,改善积碳在催化剂径向上的分布,提高MoS2相的高温稳定性,并在使用过程中尽可能避免热点和飞温等情况。  相似文献   

4.
将大孔最可几孔径和大孔孔体积占比呈梯度分布的3种双峰孔载体制备成催化剂,考察双峰孔对催化剂物化性质和性能的影响.结果表明,与单峰孔载体制备的渣油加氢降残炭催化剂相比,由于双峰孔载体比表面积的降低以及单位质量羟基数量的降低,催化剂上金属分散度较低,金属与载体间作用力较弱,硫化态活性相平均长度和平均堆积层数均较高.随催化剂...  相似文献   

5.
针对炼油厂渣油加氢装置进料性质的变化引起产品及工艺条件变化的情况,提出一种渣油加氢脱残炭反应动力学模型并对其进行了验证。结果表明,在反应压力为17.0 MPa、液时空速为0.4 h-1、氢油体积比(700~1 000)∶1、反应温度380~418℃的工况下,以两种常压渣油的混合油为加工原料,选择催化剂活性平稳阶段(1 000~2 000 h)工业装置数据进行了非线性拟合获得动力学参数和理论反应温度,将该温度下产品残炭计算值与实验值进行了对比,两者以对角线形式均匀分布,非常吻合,且两者平均相对误差为1.6%;对理论反应温度与预期运行周期(DOS)进行拟合,催化剂活性稳定后两者呈较好的线性关系,通过计算得知,当装置操作温度达到418℃时的DOS计算值为548 d,DOS实验值为523 d,两者平均相对误差为4.6%,说明该模型准确度较高。最后选用其他原料油对该模型进行了验证,验证产品中残炭实验值与计算值平均相对误差为1.3%,当反应温度为399.65℃时的DOS计算值与实验值的平均相对误差为4.1%,满足动力学相对误差不大于5%的要求,说明该模型可靠性较高。  相似文献   

6.
选取炼油厂卸载的典型废渣油加氢脱硫脱残炭催化剂(简称废剂),采用氧化预处理和再分散剂浸渍后处理对废剂进行再生,考察氧化预处理和后处理条件对废剂物化性质以及活性恢复的影响.结果表明,420℃氧化预处理后,催化剂物化性质和活性的恢复率都较高,并且在中型装置上运转800 h过程中,氧化预处理剂的相对脱硫和脱残炭活性均能达到并...  相似文献   

7.
载体改性对纳米加氢催化剂活性的影响   总被引:5,自引:0,他引:5  
应用不同的助剂对纳米加氢催化剂的载体进行改性,以甲苯加氢反应为探针,对改性后的纳米加氢催化剂进行了性能测试。运用XRD、SEM方法对改性的纳米加氢催化剂进行表征,研究了载体改性对纳米加氢催化剂活性的影响。结果表明,载体改性细化了催化剂活性组分的粒子,提高了活性组分粒子的分散度,有利于提高纳米加氢催化剂的活性,助剂中TiO2改性的催化剂活性较高且稳定。  相似文献   

8.
根据纳米自组装机理,以γ-Al_2O_3为载体,Mo-Ni为活性组分,制备了正向胶束法和反应胶束法Mo-Ni纳米自组装催化剂。结果表明:以残炭质量分数为4.78%的渣油为原料,在Mo/Ni(质量比)为6∶1的条件下,当精制催化剂和裂化催化剂活性组分负载质量分数分别为30%,25%时,催化剂的残炭脱除效果为最佳;将正向胶束法制备的精制和裂化催化剂复配使用,在反应压力为14 MPa,体积空速为0.20 h~(-1),反应温度为350℃,氢气/原料油(体积比)为850的最佳条件下,渣油加氢脱残炭率最高达到53.82%。  相似文献   

9.
考察了载体焙烧温度对催化剂物性结构及加氢降残炭活性的影响。采用BET,H2-TPR,HRTEM等手段对载体和催化剂进行了表征,并用高压釜对催化剂的加氢降残炭性能进行评价。结果表明,随着载体焙烧温度的增加,载体的比表面积逐渐减小,平均孔径增大,表面羟基数量减少。将通过不同焙烧温度得到的氧化铝载体制成催化剂后,发现随着载体焙烧温度的升高,载体表面羟基数量减少,金属与载体间的相互作用逐渐减弱,从而使硫化后的催化剂MoS2片晶结构发生改变,即随着焙烧温度的升高,MoS2片晶逐渐变大,积聚程度增加。催化剂的实际油品降残炭与脱硫性能评价结果发现600℃焙烧的载体所制成的催化剂降残炭活性最高。  相似文献   

10.
在管式炉内对工业渣油加氢主催化剂(脱硫剂和脱残炭剂)进行再生,利用BET,XRD,TPR等分析手段对再生前后的催化剂进行表征,考察了再生后催化剂的性能。表征结果显示,再生后脱硫剂和脱残炭剂孔体积分别达到了新鲜催化剂的87.6%和95.6%,比表面积分别达到了新鲜催化剂的91.1%和96.8%;再生后脱硫剂和脱残炭剂均有少量的镍铝尖晶石生成,使催化剂的活性降低。试验结果表明,再生后脱硫剂和脱残炭剂的活性金属H2还原温度分别比新鲜催化剂提高了35℃和27℃,催化剂的活性大幅下降。因此,需进一步研究,降低反应温度、提高再生催化剂的活性,使再生催化剂具备利用价值。  相似文献   

11.
采用氮气吸附-脱附、红外光谱、氨程序升温脱附、X射线衍射等表征手段,分别对热辐射式和热风循环式焙烧技术制备的加氢催化剂载体的机械强度、堆密度、孔体积、比表面积、晶相、酸性等进行对比分析。结果显示:热辐射式焙烧技术所得载体具有较高的强度、较低的堆密度,晶体生长过程更平稳;热风循环式焙烧技术所得载体比表面积较大,小孔比例增加,具有更适宜的酸性中心分布,表现出更高的加氢活性。  相似文献   

12.
采用氮气吸附-脱附、红外光谱、氨程序升温脱附、X射线衍射等表征手段,分别对热辐射式和热风循环式焙烧技术制备的加氢催化剂载体的机械强度、堆密度、孔体积、比表面积、晶相、酸性等进行对比分析。结果显示:热辐射式焙烧技术所得载体具有较高的强度、较低的堆密度,晶体生长过程更平稳;热风循环式焙烧技术所得载体比表面积较大,小孔比例增加,具有更适宜的酸性中心分布,表现出更高的加氢活性。  相似文献   

13.
采用浸渍法以TiO2成型载体制备了Pd/TiO2催化剂.采用BET、XRD、XPS、H2-TPR等手段对所制备的催化剂进行了表征.将不同温度下焙烧的TiO2为载体制备的Pd/TiO2催化剂用于粗对苯二甲酸(CTA)中的主要杂质对羧基苯甲醛(4-CBA)的催化加氖反应,考察了载体焙烧温度对其所制备的催化剂活性的影响.结果表明,随着TiO2成型载体焙烧温度的升高,Pd/TiO2催化剂的比表面积和孔容降低,平均孔径增大.Pd/TiO2催化剂样品XRD谱中未检测到金属Pd的特征衍射峰,同时催化剂中TiO2的晶相始终保持锐钛型结构.Pd/TiO2催化剂表面Pd的比表面积随着载体焙烧温度的升高而降低.载体焙烧温度的高低可改变PdHx物种在其所制备的催化剂表面的数量及其结合状态.当TiO2载体焙烧温度为500℃时,所制备的Pd/TiO2催化剂表面Pd的比表面积最大,催化剂的加氢活性最高,在反应温度280℃、H2分压0.6 MPa、反应时间0.3 h的条件下,4-CBA转化率可达到99.5%以上.  相似文献   

14.
干燥及焙烧温度对加氢裂化催化剂的影响   总被引:1,自引:0,他引:1  
采用浸渍法在不同干燥和焙烧温度下制备一系列WNi型加氢裂化催化剂,采用N2-物理吸附、NH3-TPD、XRD、TPR等手段对催化剂进行表征,并用十二烷为模型化合物考察催化剂的加氢裂化性能。结果表明:随着焙烧温度的增加,催化剂的比表面积略有降低,孔径变大,孔体积变化不大;随着焙烧温度的增加,催化剂的酸量呈先增加后降低的变化趋势,在400 ℃时达到最大值,当焙烧温度提高到600 ℃时,金属组分在载体表面发生聚集;加氢裂化催化剂的活性随着焙烧温度的增加呈先增加后降低的变化趋势,峰值出现在焙烧温度为500 ℃处。说明适宜的焙烧温度有利于提高催化剂的催化性能,当催化剂经过高温焙烧时,会对其活性产生抑制作用。干燥温度由200 ℃降到120 ℃时,催化剂的孔体积和孔径提高,比表面积略有降低,酸量基本不变,催化活性提高。  相似文献   

15.
采用混捏法制备纳米介孔TiO2-Al2O3复合载体,考察载体焙烧温度对负载型Co-Mo双金属加氢脱硫催化剂性能的影响,并采用N2物理吸附、X射线衍射和吸附吡啶红外光谱技术对复合载体及催化剂进行表征。结果表明,不同温度焙烧的复合载体都具有介孔结构;随焙烧温度的升高,催化剂的比表面积和孔体积减小,平均孔径增大;催化剂中TiO2的平均晶粒尺寸属纳米级且随焙烧温度的升高而增大;复合载体中Al2O3的存在提高了TiO2的晶型转变温度;不同温度焙烧的复合载体表面均主要为L酸中心而几乎没有B酸中心。在微型固定床反应器上对制备的Co-Mo/ TiO2-Al2O3催化剂进行了评价,结果表明,载体经适宜温度焙烧后所得催化剂具有良好的加氢脱硫活性和选择性。  相似文献   

16.
以金属有机骨架为牺牲模板制备了一系列MnOx催化剂,考察了焙烧温度对催化剂脱硝性能的影响,并利用多种手段对催化剂的表面结构和物化性质进行分析表征。结果表明:随着焙烧温度的升高,Mn3O4的结晶度变好,但不利于活性组分的分散;MnOx催化剂的比表面积和孔体积变小,孔径增大;MnOx催化剂具有的弱酸性位点减少,氧化还原性能变差,进而催化剂的低温脱硝活性变差。活性评价结果表明,300 ℃焙烧的MnOx催化剂具有最佳的低温活性,在体积空速为20 000 h-1的条件下,反应温度为120~200 ℃时,NO转化率达90%以上。  相似文献   

17.
以高硫劣质渣油为原料,用自行研发的沸腾床渣油加氢微球催化剂,在STRONG沸腾床试验装置上进行了加氢脱金属试验,考察了温度、空速和氢油体积比对渣油脱金属率的影响。结果表明:在沸腾床全混流的状态下,在试验所考察的温度范围内,渣油加氢脱金属率随着反应温度的增加呈上升趋势,最适合的反应温度为380 ℃;在试验所考察的空速范围内,原料的脱金属率随着空速的增加呈下降趋势,且下降趋势明显,最适合的空速为1.6 h-1;在试验所考察的氢油体积比范围内,脱金属率先随氢油体积比的增大而提高,达到一个最佳反应区域(氢油体积比450~550)后,又随氢油体积比的增大而降低。  相似文献   

18.
以十六烷基三甲基溴化铵(CTAB)为模板剂合成大孔径氧化铝粉,并由之制备氧化铝载体。同时,以普通氧化铝粉中添加石墨为模板剂(简称石墨模板剂)制备大孔径氧化铝载体和以单独的普通氧化铝粉制备载体(简称普通氧化铝载体)。将这3种载体及由其制备的Mo-Co型加氢处理催化剂进行表征分析和活性评价对比试验。通过BET比表面积测试、扫描电子显微镜(SEM)和NH3程序升温脱附(NH3-TPD)等手段表征发现,采用CTAB模板剂和石墨模板剂均可制备成孔径和孔体积高于普通氧化铝载体的大孔径氧化铝载体,但由石墨模板剂制备的载体表面羟基和酸量低于由CTAB模板剂制备的载体和普通氧化铝载体。对以这3种载体制备的催化剂进行硫化,并进行对比分析和活性评价试验,结果表明,采用CTAB模板剂制备的载体所制催化剂的硫化度最高,多层活性相晶片数目也最多,加氢脱硫活性最好。  相似文献   

19.
 采用浸渍法以TiO2成型载体制备了Pd/TiO2催化剂。采用BET、XRD、XPS、H2-TPR等手段对所制备的催化剂进行了表征。将不同温度下焙烧的TiO2为载体制备的Pd/TiO2催化剂用于粗对苯二甲酸(CTA)中的主要杂质对羧基苯甲醛(4-CBA)的催化加氢反应,考察了载体焙烧温度对其所制备的催化剂活性的影响。结果表明,随着TiO2成型载体焙烧温度的升高, Pd/TiO2催化剂的比表面积和孔容降低,平均孔径增大。Pd/TiO2催化剂样品XRD谱中未检测到金属Pd的特征衍射峰,同时催化剂中TiO2的晶相始终保持锐钛型结构。Pd/TiO2催化剂表面Pd的比表面积随着载体焙烧温度的升高而降低。载体焙烧温度的高低可改变PdHx物种在其所制备的催化剂表面的数量及其结合状态。当TiO2载体焙烧温度为500℃时,所制备的Pd/TiO2催化剂表面Pd的比表面积最大,催化剂的加氢活性最高,在反应温度280℃、H2分压0.6 MPa、反应时间0.3 h的条件下,4-CBA转化率可达到99.5%以上。  相似文献   

20.
考察了焙烧条件对工业甲烷合成催化剂Ni-MgO-Al2O3的性能的影响,采用X射线衍射、低温氮物理吸附、程序升温还原、CO脉冲吸附等手段对反应后的催化剂进行了表征。结果表明,随着焙烧温度的升高和焙烧时间的延长,催化剂活性金属组分分散效果更好,与载体的结合作用更强,催化剂还原的耗氢量变小。焙烧后有MgAl2O4和NiAl2O4等晶相结构形成,加强了催化剂的机械强度,同时提高了催化剂热稳定性能。在温度750℃、压力2 MPa、空速8 000h-1条件下,950℃焙烧3h的催化剂的活性最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号