首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitogen-activated T cell lines may be reproducibly used to identify relatively conserved HIV-1 epitopes that dominate CTL recognition of HIV-infected cells. Using a combination of nested truncations of HIV-vaccinia recombinants encoding HIV-1LAI Env and overlapping peptides that span the coding regions of the HIV-1 SF2 subclone of env, gag, nef, rev, and tat, we have mapped the immunodominant, relatively conserved CTL epitopes recognized by 25 HIV-seropositive individuals with CD4 counts between 100 and 500/mm3 and no history of AIDS opportunistic infection. We could characterize at least 1 peptide CTL epitope recognized by the T cell lines of 18 of 25 of the subjects; the T cell lines from 2 additional subjects recognized HIV-vaccinia presenting targets, but no dominant peptide epitope was identified. CTL epitopes were most frequently encoded by gag (recognized by 16 of 25 patient T cell lines), followed by nef and env (11 of 25 each), and the RT region of pol (9 of 25). Tat and Rev were rarely the sites of CTL epitopes. The identified epitopes occurred predominantly in relatively conserved regions of HIV-1. The mean number of HIV peptides identified at a single time for each cell line was 2.7 +/- 1.7. Although no single peptide dominated CTL recognition in more than four individuals, clusters of epitopes were found in the N-terminal region of gp160 and in two central regions of Nef. The dominant HIV-1 CTL epitopes in infected patients were not predictable on the basis of MHC expression and varied widely in an MHC-diverse population.  相似文献   

2.
Host cytotoxic T lymphocytes (CTLs) that recognize specific viral peptides (epitopes) are thought to provide the most effective control of viral replication and spread. However, viruses may escape this recognition through mutations in CTL epitopes. We tested the hypothesis that, as an adaptation on the part of the host to constrain parasite escape from immune control, class I major histocompatibility complex (MHC) molecules present peptides that are derived from conserved regions of foreign proteins to CTLs. We did this by estimating the relative conservation of CTL epitopes of the functionally important Nef protein of human immunodeficiency virus 1 (HIV-1) and relating this to the structure and function of the protein. In comparisons among sequences from several HIV-1 subtypes and both major groups, CTL epitopes had lower rates of nonsynonymous nucleotide substitution per site than did the remainder of the protein, indicating the relative conservation of these epitopes. In contrast, helper T-cell epitopes were as conserved as, and monoclonal antibody epitopes less conserved than, the remainder of the protein. The conservation of CTL epitopes is apparently due to their derivation from functionally important domains of Nef, since CTL epitopes coincide with these domains and these domains are conserved relative to the remainder of the protein, in contrast to secondary structural elements, which are not. Recent studies provide evidence of CTL selection on HIV-1 epitopes, but the variational range of viral escape mutants appears to be limited by functional constraints on the protein regions from which epitopes are derived. The presentation of conserved foreign peptides to CTLs by class I MHC molecules may be a general adaptation of vertebrate hosts to constrain the adaptation of their intracellular parasites.  相似文献   

3.
This study shows that induction of tumor-specific CD4+ T cells by vaccination with a specific viral T helper epitope, contained within a synthetic peptide, results in protective immunity against major histocompatibility complex (MHC) class II negative, virus-induced tumor cells. Protection was also induced against sarcoma induction by acutely transforming retrovirus. In contrast, no protective immunity was induced by vaccination with an unrelated T helper epitope. By cytokine pattern analysis, the induced CD4+ T cells were of the T helper cell 1 type. The peptide-specific CD4+ T cells did not directly recognize the tumor cells, indicating involvement of cross-priming by tumor-associated antigen-presenting cells. The main effector cells responsible for tumor eradication were identified as CD8+ cytotoxic T cells that were found to recognize a recently described immunodominant viral gag-encoded cytotoxic T lymphocyte (CTL) epitope, which is unrelated to the viral env-encoded T helper peptide sequence. Simultaneous vaccination with the tumor-specific T helper and CTL epitopes resulted in strong synergistic protection. These results indicate the crucial role of T helper cells for optimal induction of protective immunity against MHC class II negative tumor cells. Protection is dependent on tumor-specific CTLs in this model system and requires cross-priming of tumor antigens by specialized antigen-presenting cells. Thus, tumor-specific T helper epitopes have to be included in the design of epitope-based vaccines.  相似文献   

4.
This study identifies instability of MHC class I/peptide complexes and intermolecular competition for MHC class I presentation as factors responsible for the subdominance of cytotoxic T lymphocyte (CTL) epitopes. This evidence is based on the characterization of a new CTL epitope derived from the glycoprotein (GP) of lymphocytic choriomeningitis virus (LCMV). This epitope, peptide GP117-125 (GP117) is presented to T cells by the mouse MHC class I molecule, H-2Db. In short-term experiments induction of GP117-specific CTL by vaccination rendered C57BL/6 mice only partially resistant to infection with wild-type LCMV (LCMV-WE) but completely resistant to challenge with a previously described LCMV variant. The variant virus, LCMV-8.7B23, bears point mutations within both known LCMV-GP, H-2 Db-restricted epitopes GP33-41 (GP33) and GP276-286 (GP276) resulting in a valine to leucine change at position 35 in peptide GP33 (V35L) and an asparagine to serine change at position 280 in peptide GP276 (N280S). Although variant peptide GP33/V35L stimulates a weak CTL response, GP276/N280S does not. Elution of peptide GP117 from both LCMV-WE- and LCMV-8.7B23-infected cells revealed that the difference in the capacity of GP117-specific CTL to protect against LCMV-WE and the virus variant LCMV-8.7B23 was due to differences in the level of GP117 presentation on the surface of both types of cells. Thus, it appears that the protective capacity of CTL specific for the subdominant epitope GP117 is influenced by the extent of presentation of other immunodominant peptide epitopes present within infected cells.  相似文献   

5.
The vast majority of in vitro experiments testing the cytotoxic T lymphocytes (CTL) activity in HIV infection has been performed with target cells consisting of autologous EBV-transformed B lymphoblastoid cell lines (B-LCLs) expressing Human immunodeficiency virus type I (HIV-1) proteins. However data concerning the lysis of primary CD4+ T lymphocytes expressing HIV-1 antigens by CTLs is still lacking. To study the CTL activity against such primary targets, we used a system involving PBMCs of an HIV+ asymptomatic patient (PT) as effector cells and the CD4+ lymphocytes or B-LCLs of his healthy HLA-identical twin brother (HTW) as target cells. These syngeneic targets were either infected with recombinant vaccinia virus containing HIV-1 gag gene (gag-vac), or coated with HIV-1 gag peptides. We demonstrate in this study that PT CTLs (which were CD3+, CD4-, CD8+, TCRalphabeta+, TCRgammadelta-, CD56-) specifically lysed both types of syngeneic target cells expressing gag-vac; however, CD4+ T cells expressing HIV gag proteins were lysed less efficiently than B-LCLs expressing the same HIV epitopes. On the other hand, no specific lysis was detected when the target cells were uninfected or infected by wild-type vaccinia virus.  相似文献   

6.
MHC class I molecules play a crucial role in immunity to viral infections by presenting viral peptides to cytotoxic T lymphocytes. One of the hallmarks of MHC class I genes in outbred populations is their extraordinary polymorphism, yet the significance of this diversity is poorly understood. Certain species with reduced MHC class I diversity, such as the cotton-top tamarin (Saguinus oedipus), are more susceptible to fatal viral infections. To explore the relationship between this primate's limited MHC class I diversity and its susceptibility to viruses, we infected five cotton-top tamarins with influenza virus. Every tamarin recognized the same immunodominant CTL epitope of the influenza nucleoprotein. Surprisingly, this nucleoprotein peptide was bound by Saoe-G*08, an MHC class I molecule expressed by every cotton-top tamarin. Two tamarins also made a subdominant response to an epitope of the matrix (M1) protein. This peptide appeared to be bound by another common MHC class I molecule. With the exception of an additional subdominant response to the polymerase (PB2) protein in one individual, no other influenza-specific CTL responses were detected. In populations or species with limited MHC class I polymorphism like the cotton-top tamarin, a dependence on shared MHC class I molecules may enhance susceptibility to viral infection, since viruses that evade MHC class I-restricted recognition in one individual will likely evade recognition in the majority of individuals.  相似文献   

7.
The activation of cytotoxic T lymphocytes (CTLs) to cells infected with adenovirus vectors contributes to problems of inflammation and transient gene expression that attend their use in gene therapy. The goal of this study was to identify in a murine model of liver gene therapy the proteins that provide targets to CTLs and to characterize the major histocompatibility complex (MHC) class I restricting elements. Mice of different MHC haplotypes were infected with an E1-deleted adenovirus expressing human alkaline phosphatase (ALP) or beta-galactosidase as a reporter protein, and splenocytes were harvested for in vitro CTL assays to aid in the characterization of CTL epitopes. A library of vaccinia viruses was created to express individual viral open reading frames, as well as the ALP and lacZ transgenes. The MHC haplotype had a dramatic impact on the distribution of CTL targets: in C57BL/6 mice, the hexon protein presented by both H-2Kb and H2Db was dominant, and in C3H mice, H-2Dk-restricted presentation of ALP was dominant. Adoptive transfer of CTLs specific for various adenovirus proteins or transgene products into either Rag-I or C3H-scid mice infected previously with an E1-deleted adenovirus verified the in vivo relevance of the adenovirus-specific CTL targets identified in vitro. The results of these experiments illustrate the impact of lr gene control on the response to gene therapy with adenovirus vectors and suggest that the efficacy of therapy with adenovirus vectors may exhibit considerable heterogeneity when applied in human populations.  相似文献   

8.
CD8+ cytotoxic T lymphocytes (CTLs) isolated from the central nervous system (CNS) of C57BI/6 mice acutely infected with mouse hepatitis virus, strain JHM (MHV-JHM), and analyzed in a direct ex vivo cytotoxicity assay recognize two epitopes (H-2Db- and H-2Kb-restricted encompassing amino acids 510-518 and 598-605, respectively) within the surface (S) glycoprotein. In contrast, CD8+ T cells isolated from the spleens of mice inoculated intraperitoneally with MHV-JHM and restimulated in vitro only respond to the H-2Db-restricted epitope. In this report, the preferential recognition of the H-2Db-restricted epitope is confirmed using splenocytes stimulated in vitro with either MHV-JHM-infected MC57 cells or with a cell line expressing the S protein and analyzed in secondary CTL assays. To determine whether these results represent a difference in epitope recognition between the spleen and CNS, secondary CTL assays were performed using spleen cells coated with peptides encompassing the CTL epitopes as stimulators. Under these conditions, both epitopes sensitized cells for lysis by spleen-derived CTLs, suggesting that both epitopes were recognized by splenic CD8+ T cells after infection in vivo. Furthermore, limiting dilution analysis indicated that the precursor frequency of splenic CD8+ T cells specific for both the H-2Kb- and H-2Db-restricted epitopes were not significantly different. Thus, the results suggest that in vitro stimulation of splenocytes specific for the H-2Kb-restricted epitope is inefficient after endogenous processing but that this inefficiency can be corrected if peptide is provided exogenously at sufficiently high concentrations. As a consequence, the results also show that cells responsive to both of the previously identified CNS-derived CD8+ T cell epitopes are present in the infected spleen at nearly the same frequency.  相似文献   

9.
In tumor transplantation models in mice, cytotoxic T lymphocytes (CTLs) are typically the primary effector cells. CTLs recognize major histocompatibility complex (MHC) class I-associated peptides expressed by tumors, leading to tumor rejection. Peptides presented by cancer cells can originate from viral proteins, normal self-proteins regulated during differentiation, or altered proteins derived from genetic alterations. However, many tumor peptides recognized by CTLs are poor immunogens, unable to induce activation and differentiation of effector CTLs. We used MHC binding motifs and the knowledge of class I:peptide:TCR structure to design heteroclitic CTL vaccines that exploit the expression of poorly immunogenic tumor peptides. The in vivo potency of this approach was demonstrated using viral and self-(differentiation) antigens as models. First, a synthetic variant of a viral antigen was expressed as a tumor antigen, and heteroclitic immunization with peptides and DNA was used to protect against tumor challenge and elicit regression of 3-d tumors. Second, a peptide from a relevant self-antigen of the tyrosinase family expressed by melanoma cells was used to design a heteroclitic peptide vaccine that successfully induced tumor protection. These results establish the in vivo applicability of heteroclitic immunization against tumors, including immunity to poorly immunogenic self-proteins.  相似文献   

10.
Increasing evidence suggests that HIV-1-specific cytotoxic T lymphocytes (CTLs) are a key host immune response to HIV-1 infection. Generation of CTL responses for prevention or therapy of HIV-1 infection has several intrinsic technical barriers such as antigen expression and presentation, the varying HLA restrictions between different individuals, and the potential for viral escape by sequence variation or surface molecule alteration on infected cells. A strategy to circumvent these limitations is the construction of a chimeric T cell receptor containing human CD4 or HIV-1-specific Ig sequences linked to the signaling domain of the T cell receptor zeta chain (universal T cell receptor). CD8+ CTLs transduced with this universal receptor can then bind and lyse infected cells that express surface HIV-1 gp120. We evaluated the ability of universal-receptor-bearing CD8+ cells from a seronegative donor to lyse acutely infected cells and inhibit HIV-1 replication in vitro. The kinetics of lysis and efficiency of inhibition were comparable to that of naturally occurring HIV-1-specific CTL clones isolated from infected individuals. Further study will be required to determine the utility of these cells as a therapeutic strategy in vivo.  相似文献   

11.
12.
13.
Heat shock proteins (hsp's) isolated from murine cancer cells can elicit protective immunity and specific cytotoxic T lymphocytes (CTLs) by channeling tumor-derived peptides bound to hsp's to the major histocompatibility class I antigen presentation pathway. Here we have investigated if hsp70 can be used in a novel peptide vaccine for the induction of protective antiviral immunity and memory CTLs. A CTL epitope from the well-defined lymphocytic choriomeningitis virus (LCMV) system was mixed with recombinant hsp70 in vitro under conditions that optimize peptide binding to hsp70. Mice were immunized with the hsp70-peptide mixture and challenged with LCMV. Virus titers were reduced 10-100-fold in these mice compared to control mice. Immunization with the hsp70-peptide mixture resulted in the development of CTL memory cells that could be reactivated during LCMV infection, and that in a 51Cr-release assay could lyse cells pulsed with the same peptide, but not cells pulsed with another LCMV peptide. These results show that hsp70 can be used with CTL epitopes to induce efficient protective antiviral immunity and the generation of peptide-specific CTLs. The results also demonstrate the usefulness of hsp70 as an alternative to adjuvants and DNA vectors for the delivery of CTL epitopes to antigen-presenting cells.  相似文献   

14.
Common chimpanzees (Pan troglodytes) infected with hepatitis C virus (HCV) show a disease progression similar to that observed for human patients. Although most infected animals develop a chronic hepatitis, virus persistence is associated with an ongoing immune response, for which the beneficial or detrimental effects are uncertain. Lines of virus-specific cytotoxic CD8+ T lymphocytes (CTL) have been previously established from liver biopsies of two common chimpanzees chronically infected with HCV-1. The viral epitopes recognized by six lines of CTL have been defined using synthetic peptides and shown to consist of 8 to 9-residue peptides derived from various viral proteins. Five of the epitopes derive from sequences that vary among strains of HCV. The majority of the corresponding variant epitopes from different HCV strains were either recognized less efficiently or not at all by the CTL, suggesting their response may have limited potential for controlling replication of HCV variants. Complementary DNAs encoding class I alleles of the two common chimpanzees, Patr-A, -B, and -C were cloned, sequenced, and transfected individually into a class I-deficient human cell line. Analysis of peptide presentation by the class I transfectants to CTL identified the Patr class I allotypes that present the six epitopes defined here and an additional epitope defined previously. The assignment of epitopes to class I allotypes based upon analysis of the transfected cells correlates precisely with the segregation of antigen-presenting function within a panel of common chimpanzee cell lines and the expression of class I heavy chains as defined by isoelectric focusing. Five of the HCV-1 epitopes are presented by Patr-B allotypes, two epitopes are presented by a Patr-A allotype, and none is presented by Patr-C allotypes.  相似文献   

15.
Immunization of mice with tumors genetically engineered to express the B7 costimulatory molecules amplifies the antitumor immune response mediated by CD8+ cytolytic T lymphocytes (CTL). In this report, we examined the effect of B7-CD28 costimulation on the hierarchy of tumor epitopes. Using a combination of affinity chromatography/reversed-phase high performance liquid chromatography and CTL cloning, we show that major histocompatibility complex (MHC) class I molecules from EL4 lymphoma cells can present at least six distinct CTL epitopes presented by MHC class I molecules. Nevertheless, mice immunized with wild-type B7-negative EL4 cells develop CTL only to one immunodominant epitope. In contrast, immunization with B7-transduced EL4 cells led to not only the amplification of the CTL response to this immunodominant epitope, but also to the recognition of five otherwise silent subdominant epitopes. The adoptive transfer of a CTL clone against such a subdominant epitope cured mice bearing EL4 lymphoma growing as an ascites tumor. The fact that CTL response can be spread to normally silent epitopes as a result of B7-CD28 costimulation suggests a novel approach to manipulate the hierarchy of CTL epitopes and offers an opportunity to explore novel targets for T cell-mediated cancer therapy.  相似文献   

16.
P18(IIIB) is a highly immunogenic peptide from the V3 loop of the HIV-1 gp160 envelope protein that is presented promiscuously by multiple class I MHC molecules. Understanding the molecular basis for promiscuous presentation may have many practical applications. As the highly prevalent HLA-A2.1 class I molecule is known to present P18(IIIB) for recognition by cytotoxic T lymphocytes (CTL) found in peripheral blood mononuclear cells of HIV+ donors, a P18(IIIB)-specific CTL line was generated from and HLA-A2(+), HIV- donor in order to define the molecular basis for, and ultimately improve upon the binding of, this peptide to HLA-A2.1. The minimal epitope recognized by the line was a decamer, I10, with the sequence RGPGRAFVTI. Interestingly, this decamer is identical to the minimal epitope from P18(IIIB) seen by murine CTL restricted by H-2Dd. A panel of Ala-substituted peptides was employed in MHC-binding and T cell response studies to identify MHC- and TCR-binding residues. Notably, many of the agretopic and epitopic residues identified were identical to those involved in the corresponding interactions of I10 with the H-2Dd MHC molecule and murine I10-specific CTL. The I10 peptide does not contain the described HLA-A2.1 binding motif. Instead a Pro at P3, a Phe at P7 and an Ile at P10 are utilized for MHC binding. Agretopic residue similarities with the hepatitis B nucleocapsid decamer suggest that these residues may comprise an alternative motif of anchors utilized by decamers for binding to HLA-A2.1.  相似文献   

17.
18.
The aim of the current study was to determine whether immunization with synthetic peptides corresponding to the joining region segment of p210 bcr-abl chimeric protein can elicit CD8+ cytotoxic T lymphocytes (CTLs) capable of specifically lysing leukemia cells. BALB/c mice were immunized with peptides identical to the joining region segment of p210 bcr-abl protein. Class I major histocompatibility complex (MHC)-restricted bcr-abl peptide-specific CD8+ CTLs were elicited. The CTL clones were H-2 Kd restricted and specifically recognized a nonamer peptide of the combined sequence of bcr-abl amino acids but neither bcr nor abl amino acid sequence alone. Despite specificity and substantial lytic potential against syngeneic cell line incubated with exogenously supplied peptides, the bcr-abl peptide-specific CTLs failed to lyse syngeneic murine leukemia cells expressing human p210 bcr-abl protein containing the same bcr-abl joining region peptide sequence. Similarly, the bcr-abl peptide-specific CTLs did not lyse human bcr-abl-positive chronic myelogenous leukemia cells expressing murine class I MHC antigen (i.e., K562 cells infected with vaccinia virus expressing H-2 Kd). The appropriateness of the joining region segment of bcr-abl protein to serve as a T cell target depends upon whether that segment is presented by class I MHC in a concentration high enough to stimulate CTLs. The current experiments using murine peptide-specific CTLs could not establish that the joining region of bcr-abl protein is processed and presented by class I MHC antigen-processing pathway, but the possibility was not ruled out. Alternative models and/or strategies are necessary.  相似文献   

19.
Infection of C57BL/6 mice with lymphocytic choriomeningitis virus (LCMV) stimulates major histocompatibility complex class I-restricted cytotoxic T cells (CTLs), which normally resolve the infection. Three peptide epitopes derived from LCMV have been shown to bind the mouse class I molecule H-2 Db and to stimulate CTL responses in LCMV-infected mice. This report describes the identity and abundance of each CTL epitope after their elution from LCMV-infected cells. Based on this information, peptide abundance was found to correlate with the magnitude of each CTL response generated after infection with LCMV. Subsequent experiments, performed to determine the antiviral capacity of each CTL specificity, indicate that the quantitative hierarchy of CTL activity does not correlate with the ability to protect against LCMV infection. This report, therefore, indicates that immunodominant epitopes should be defined, not only by the strength of the CTL response that they stimulate, but also by the ability of the CTLs to protect against infection.  相似文献   

20.
Induction of cytotoxic T lymphocytes (CTLs) by vaccination has been shown to protect against bacterial, viral, and tumoral challenge. The aim of this study was to identify CTL epitopes on the 38-kDa lipoglycoprotein from Mycobacterium tuberculosis. The identification of these CTL epitopes was based on synthesizing peptides designed from the 38-kDa lipoglycoprotein, with known major histocompatibility complex class I (MHC-I) binding motifs (H-2Db), and studying their ability to up-regulate and stabilize MHC-I molecules on the mouse lymphoma cell line RMA-S. To improve the capacity of the identified peptides to induce CTL responses in mice, palmitic acid with a cysteine-serine-serine spacer amino acid sequence was attached to the amino terminus of the peptide. Two of five peptides with H-2Db binding motifs and their corresponding lipopeptides up-regulated and stabilized the H-2Db molecules on RMA-S cells. Both lipopeptides, in combination with incomplete Freund's adjuvant, induced CTL responses in C57BL/6 (H-2(b)) mice. Moreover, the lipopeptide induced stronger CTL responses than the peptide. The capacity of the various lipopeptides to induce CTL displayed a good relationship with the ability of the (lipo)peptide to up-regulate and to stabilize H-2Db molecules. The capacity of the peptides and lipopeptides to up-regulate and stabilize MHC-I expression can therefore be used to predict their potential to function as a CTL epitope. The newly identified CTL epitopes and their lipid derivatives provide us with important information for future M. tuberculosis vaccine design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号