首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partition coefficients (Kp) of benzo(a)pyrene (BaP), 3,3′,4,4′-tetrachlorobiphenyl (TCB) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to dissolved kraft lignin (Indulin AT), chlorolignin isolated from a bleached kraft mill effluent (BKME) and dissolved organic matter (DOM) in a lake receiving BKME were measured by equilibrium dialysis. The Kp values of kraft lignin were 28.2 × 105, 6.5 × 105 and 15.9 × 105 and those of chlorolignin were 8.3 × 105, 2.9 × 105 and 2.2 × 105 for BaP, TCB and TCDD, respectively. In addition, DOM in a series of lake water samples collected from the southern part of Lake Saimaa, SE Finland, receiving BKME revealed higher binding capacities to all of the three model compounds than natural DOM in water upstream from the pulp mill. An important phenomenon related to the environmental transport and fate of xenobiotics was almost the full reversibility of the binding between chlorolignin and model compounds. The obtained Kp values of chlorolignin after a 4 day dissociation period were 12.6 × 105 and 4.6 × 105 for BaP and TCDD, respectively.In short-term (24 h) accumulation experiments with Daphnia magna the effects of kraft lignin and chlorolignin on the bioavailability of three model compounds was very clear. The bioconcentration factors of the xenobiotics in the chlorolignin containing water (DOC = 10 mg C/l) were 20–30 and 25–35% of those organic-free control and upstream reference waters (DOC = 7.2 mg C/l), respectively. The effect of chlorolignin of BKME on the bioavailability of model compounds was also seen in the lake water series of Lake Saimaa.  相似文献   

2.
The interaction of organic micropollutants with dissolved organic carbon (DOC) can influence their transport, degradation and bioavailability. While this has been well established for natural organic carbon, very little is known regarding the influence of DOC on the fate of micropollutants during wastewater treatment and water recycling. Dissolved organic carbon-water partition coefficients (KDOC) for wastewater derived and reference DOC were measured for a range of micropollutants using a depletion method with polydimethylsiloxane disks. For micropollutants with an octanol-water partition coefficient (log KOW) greater than 4 there was a significant difference in KDOC between reference and wastewater derived DOC, with partitioning to wastewater derived DOC over 1000 times lower for the most hydrophobic micropollutants. The interaction of nonylphenol with wastewater derived DOC from different stages of a wastewater and advanced water treatment train was studied, but little difference in KDOC was observed. Organic carbon characterisation revealed that reference and wastewater derived DOC had very different properties due to their different origins. Consequently, the reduced sorption capacity of wastewater derived DOC may be related to their microbial origin which led to reduced aromaticity and lower molecular weight. This study suggests that for hydrophobic micropollutants (log KOW > 4) a higher concentration of freely dissolved and thus bioavailable micropollutants is expected in the presence of wastewater derived DOC than predicted using KDOC values quantified using reference DOC. The implication is that naturally derived DOC may not be an appropriate surrogate for wastewater derived DOC as a matrix for assessing the fate of micropollutants in engineered systems.  相似文献   

3.
Adi Maoz 《Water research》2010,44(3):981-4482
Pharmaceutical compounds and dissolved organic matter (DOM) are co-introduced into the environment by irrigation with reclaimed wastewater and/or application of biosolids. In this study, we evaluate the role and mechanism of interaction of the pharmaceuticals naproxen and carbamazepine with structural fractions of biosolids-derived DOM. Sorption interactions were estimated from dialysis-bag experiments at different pHs.Sorption of naproxen and carbamazepine by the hydrophobic acid fraction exhibited strong pH-dependence. With both pharmaceuticals, the highest sorption coefficients (KDOC) were at pH 4. With the hydrophobic neutral fraction, pH affected only naproxen sorption (decreasing with increasing pH). Among the hydrophilic DOM fractions, the hydrophilic acid fraction exhibited the highest KDOC value for carbamazepine, probably due to their bipolar character. In the hydrophilic acid fraction-naproxen system, significant anionic repulsion was observed with increasing pH. The hydrophilic base fraction contains positively charged functional groups. Therefore with increasing ionization of naproxen (with increasing pH), KDOC to this fraction increased. The hydrophilic neutral fraction exhibited the lowest KDOC with both studied pharmaceuticals.The KDOC value of carbamazepine with the bulk DOM sample was higher than the calculated KDOC value based on sorption by the individual isolated fractions. The opposite trend was observed with naproxen at pH 8: the calculated KDOC value was higher than the value obtained for the bulk DOM. These results demonstrate that DOM fractions interact with each other and do not act as separate sorption domains.  相似文献   

4.
The characterization of dissolved organic matter (DOM) in drinking water sources is important as this material contributes to the formation of disinfection by-products (DBPs) and affects how water treatment unit operations are optimized. Drinking water utilities often draw water from sources impacted by multiple tributaries, with possible shifts in DOM concentrations and reactivity over time, depending on specific environmental conditions. In this study, results are presented on the characterization of DOM under varying ambient conditions from the four main tributaries of Lake Mead, a large reservoir in the southwest United States. The tributaries include the Las Vegas Wash (LVW), Muddy River (MR), Virgin River (VR) and the upper Colorado River (UCR). One additional sample was collected at the outflow of the reservoir (lower Colorado River (LCR)). The DOM was characterized by both bulk parameters (specific ultraviolet absorbance (SUVA)) and specific physicochemical properties, i.e. size, polarity and fluorescence. The analyses were performed emphasizing limited changes in its natural configuration by eliminating analytical preparation steps, excluding sample filtration (0.45 microm filter). Results indicate that each tributary had a different molecular weight distribution, as well as fluorescence properties, which helped in the identification of the relative source of DOM (allochthonous versus autochthonous). The largest apparent molecular weight distribution was observed for DOM samples collected at the MR site, which is fed mostly by groundwater seepage. The smallest apparent molecular weight was observed for DOM collected at the LCR site, suggesting that retention in the reservoir resulted in a decrease in molecular weight as a probable result of photo oxidation and microbial processes. Fluorescence analysis aided the differentiation of DOM by clearly identifying waters that were affected by microbial activity (LVW, UCR, and LCR), either by wastewater influence or by autochthonous processes, versus limited microbial influence (MR and VR). Polarity analysis revealed clear differences in the hydrophobic/hydrophilic nature between waters, including temporal differences within individual waters at a particular site. The DOM from the LVW and VR sites had higher hydrophobic character, as measured by retention onto non-polar sorbents. Additionally, the DOM collected at the LCR had the least hydrophobic character. This type of analysis would be beneficial to utilities who want to better understand and manage their source waters, especially in the evaluation of temporal variation within a watershed.  相似文献   

5.
We present a model that considers UV-absorbing dissolved organic matter (DOM) to consist of two components (A and B), each with a distinct and constant spectrum. Component A absorbs UV light strongly, and is therefore presumed to possess aromatic chromophores and hydrophobic character, whereas B absorbs weakly and can be assumed hydrophilic. We parameterised the model with dissolved organic carbon concentrations [DOC] and corresponding UV spectra for c. 1700 filtered surface water samples from North America and the United Kingdom, by optimising extinction coefficients for A and B, together with a small constant concentration of non-absorbing DOM (0.80 mg DOC L−1). Good unbiased predictions of [DOC] from absorbance data at 270 and 350 nm were obtained (r2 = 0.98), the sum of squared residuals in [DOC] being reduced by 66% compared to a regression model fitted to absorbance at 270 nm alone. The parameterised model can use measured optical absorbance values at any pair of suitable wavelengths to calculate both [DOC] and the relative amounts of A and B in a water sample, i.e. measures of quantity and quality. Blind prediction of [DOC] was satisfactory for 9 of 11 independent data sets (181 of 213 individual samples).  相似文献   

6.
Laser flash photolysis (LFP) was used to characterize a triplet excited state species isolated from Black River and San Joaquin wetlands particulate organic matter (POM). The solubilized organic matter, isolated from POM by pH-independent diffusion in distilled water, was named PdOM. UV–visible absorption spectroscopy, excitation–emission matrix spectroscopy (EEMs), and 1H NMR were used to characterize the PdOM. While LFP of dissolved organic matter (DOM) is known to generate the solvated electron, LFP of the PdOM transient in argon-, air-, and nitrous oxide-saturated solutions indicated that this was a triplet excited state species (3PdOM*). The lifetime and the reactivity of 3PdOM* with sorbic acid, a triplet state quencher, were compared with that of the triplet excited state of benzophenone, a DOM proxy. A second excited state species (designated DOM*), with a longer lifetime, was reported in a number of previous studies but not characterized. The lifetime of DOM*, measured for seventeen organic matter isolates, lignin, tannic acid, and three wetlands plant extracts, was shown to differentiate allochthonous from autochthonous DOM. 3POM* and DOM* were also observed in lake water and a constructed wetlands' water. Aqueous extracts of fresh and aged plant material from the same wetland were shown to be one source of these excited state species. This study provides evidence of a role for POM in the photochemistry of natural and constructed wetland waters.  相似文献   

7.
A portable reverse osmosis (RO) system was constructed and used to concentrate dissolved organic matter (DOM) from the Suwannee River in southeastern Georgia. Using this RO system, 150–180 1/h of river water could be processed with 90% recovery of DOM. After further cation exchange and lyophilization of the concentrated river water samples, large quantities of low-ash freeze-dried products were isolated. We highly recommend this RO method for concentration of DOM in fresh waters because (1) a very high percentage of DOM is recovered, which indicates minimal fractionation of the original sample; and (2) the process is quite rapid, which permits large quantities of DOM to be concentrated in a reasonable length of time.  相似文献   

8.
Dilling J  Kaiser K 《Water research》2002,36(20):5037-5044
In this study, we tested a simple and rapid method for the estimation of carbon in the hydrophobic fraction of dissolved organic matter (DOM) of different origin (spruce, pine, and beech litter) in soil water. The method is based on the fact that the hydrophobic fraction of DOM contains almost entirely the aromatic moieties of DOM. Thus, it showed a clearly distinct light absorption at 260 nm compared to the hydrophilic fraction. This light absorption was directly proportional to the concentration of the hydrophobic fraction. Moreover, it was independent of the concentration of the hydrophilic fraction. We compared the concentrations of hydrophobic DOM estimated by the UV method with those of the conventional fractionation using chromatographic columns of XAD-8 macroporous resin and found an excellent agreement between the two methods for both solutions from laboratory sorption experiments and field samples of forest floor leachates and subsoil porewaters. In addition, the absorption at 260 nm of hydrophobic DOM proved to be independent of pH values ranging from 2.0 to 6.5. Compared to the conventional chromatographic fractionation, the method using the UV absorption at 260 nm is less time consuming, needs a much smaller sample volume, and showed a better reproducibility. However, its use is restricted to water samples of low nitrate (<25 mg L−1) and Fe (<5 mg L−1) concentrations and, probably, with the hydrophobic fraction dominated by aromatic compounds deriving from degradation of lignin.  相似文献   

9.
Diuron is frequently detected in some drinking water reservoirs under the Burgundy vineyards, where organic amendments are applied. The environmental effect of these amendments on pesticide transport is ambiguous: on the one hand it could enhance their retention by increasing soil organic carbon content; on the other hand, dissolved organic matter (DOM) could facilitate their transport. Elutions were performed using columns packed with glass beads in order to investigate DOM-diuron interactions, and the possible co-transport of diuron and DOM. Four organic amendments (A, B, C and D) were tested; C and D were sampled at fresh (F) and mature (M) stages. An increase in diuron leaching was observed only for A and DF amendments (up to 16% compared to the DOM-free blank samples), suggesting a DOM effect on diuron transport. These results could be explained by the higher DOM leaching for A and DF compared to B, CF, CM and DM increasing diuron-DOM interactions. These interactions seem to be related to the aromatic and aliphatic content of the DOM, determining formation of hydrogen and non-covalent bonds. The degree of organic matter maturity does not seem to have any effect with amendment C, while a reduction in diuron leaching is observed between DF and DM. After equilibrium dialysis measurement of diuron-DOM complexes, it appeared that less than 3% of the diuron applied corresponded to complexes with a molecular weight > 1000 Da. Complexes < 1000 Da could also take part in this facilitated transport.  相似文献   

10.
Inactivation of bacteriophage MS2 by reactive oxygen species (ROS) and triplet excited state of dissolved organic matter (3DOM*) produced by irradiation of natural and synthetic sensitizers with simulated sunlight of wavelengths greater than 320 nm was investigated. Natural sensitizers included purified DOM isolates obtained from wastewater and river waters, and water samples collected from Singapore River, Stamford Canal, and Marina Bay Reservoir in Singapore. Linear correlations were found between MS2 inactivation rate constants (kobs) and the photo-induced reaction rate constants of 2,4,6-trimethylphenol (TMP), a probe compound shown to react mainly with 3DOM*. Linear correlations between MS2 kobs and singlet oxygen (1O2) concentrations were also found for both purified DOM isolates and natural water samples. These correlations, along with data from quenching experiments and experiments with synthetic sensitizers, Rose Bengal (RB), 3′-methoxyacetophenone (3′-MAP), and nitrite (2NO)(NO2), suggest that 1O2, 3DOM*, and hydroxyl radicals (OH) could inactivate bacteriophage MS2. Linear correlations between MS2 kobs and Specific Ultraviolet Absorption determined at 254 nm (SUVA254) were also found for both purified DOM isolates and natural samples. These results suggest the potential use of TMP as a chemical probe and SUVA254 as an indicator for virus inactivation in natural and purified DOM water samples.  相似文献   

11.
Ultrafiltration results of humic Lake Tjeukemeer water demonstrated that light absorbance at 250 nm (E250), fluorescence (λex = 365 nm; λem = 470 nm) (F), and concentration of dissolved organic carbon (DOC) vary with the molecular size (5–200 nm) of the dissolved organic matter. The ratio of the ultrafiltered organic fractions increased with decreasing molecular size of the DOC. However, under field conditions this ratio failed to predict molecular size distribution.These results limit the applicability of E250 and F as measures of molecular size and concentration of DOC. However, E250 measurements can be made rapidly and easily, and so are useful in estimating (30%) concentrations of DOC in humic waters.  相似文献   

12.
Sorption processes involving secondary iron minerals may significantly contribute to immobilisation of metals in soils and surface waters. In the present work the effect of dissolved organic matter (DOM) from a concentrated bog-water on the adsorption of Cu(II) onto schwertmannite (Fe8O8(OH)6SO4) and goethite (α-FeOOH) has been studied. The acid/base behaviour of DOM up to pH 6 was explained by assuming a diprotic acid with a density of carboxylate groups of 6.90 μeq (mg C)−1. The resulting acidity constants, recalculated to zero ionic strength were and .The uptake of DOM to schwertmannite and goethite was highest at low pH although adsorption was significant also under mildly alkaline conditions. Adsorption to the two minerals was similar although at high pH more DOM was adsorbed to schwertmannite than to goethite.DOM enhanced the adsorption of Cu(II) at moderately low pH in the goethite system but there was no effect of DOM in the case of schwertmannite. The presence of Cu(II) resulted in a decreased adsorption of DOM to goethite at weakly acidic pH and increased adsorption at high pH. In the case of schwertmannite, Cu(II) did not affect DOM uptake.  相似文献   

13.
The removal of hydrophobic organic pollutants in water to surfactant-coated aluminum hydroxide [surfactant-Al(OH)3] was investigated. Anionic surfactants such as sodium dodecyl sulfate (SDS), sodium bis(2-ethylhexyl)sulfosuccinate (AOT), and sodium oleate were sorbed on positively charged aluminum hydroxide at pH 7 and formed hydrophobic aggregates that can incorporate hydrophobic organic pollutants in water. Because of the hydrophobic interaction and decrease in the positive charge, surfactant-Al(OH)3 was coagulated into precipitates that can readily be separated from water. Hydrophobic organic pollutants such as alkylphenols, polycyclic aromatic hydrocarbons, estrogens, chlorinated antifungals, and pesticides were well collected to the precipitates and thus efficiently removed from water. The collection of hydrophobic organic pollutants was correlated to their aqueous-octanol distribution coefficient. The decomposition of hydrophobic organic pollutants was examined using a bacterial agent (Bacillus subtilis). Hydrophobic organic compounds collected to AOT-Al(OH)3 or sodium oleate-Al(OH)3 were insufficiently decomposed. On the other hand, nonylphenol, octylphenol, and pendimethalin collected to SDS-Al(OH)3 were decomposed within 1 week. The decomposition was accelerated by the collection to SDS-Al(OH)3.  相似文献   

14.
Dissolved organic matter (DOM) in water from eutrophic Lake Kasumigaura, its inflowing rivers, and several other DOM sources in the lake catchment area was fractionated using resin adsorbents into five classes: aquatic humic substances (AHS), hydrophobic neutrals (HoN), hydrophilic acids (HiA), bases (BaS), and hydrophilic neutrals (HiN). The DOM-fraction distribution pattern and the ultraviolet absorbance to dissolved organic carbon ratio (UV/DOC ratio) were found remarkably effective for evaluating the characteristics of DOM in water. DOM-fraction distribution patterns were significantly different depending on the origin of the sample. AHS and HiA were found to be the dominant fractions in DOM in all samples studied. HiA prevailed over AHS in the lake water, whereas AHS were slightly more abundant than HiA in the river waters. AHS were in the great majority in forest streams and plowed-field percolates. HiA abounded in paddy-field outflow, domestic sewage, and sewage-treatment-plant effluent. Only domestic sewage contained a significant amount of HoN. The UV/DOC ratio also varied depending on the origin of the sample: the ratios in total DOM, AHS, and HiA were greater in river waters than in the lake water. The greatest ratio of AHS was found in paddy-field outflow and the lowest in domestic sewage. The UV/DOC ratios in the sewage-treatment-plant effluent were very similar to those in the lake water.  相似文献   

15.
The documented presence of pharmaceuticals and personal care products (PPCPs) in water sources has prompted a global interest in understanding their environmental fate. Dissolved organic matter (DOM) can potentially alter the fate of these contaminants in aqueous systems by forming contaminant-DOM complexes. In-situ measurements were made to assess the interactions between three common PPCP contaminants and two distinct DOM sources: a wastewater treatment plant (WWOM) and the Suwannee River, GA (SROM). Aqueous DOM solutions (8.0 mg L−1 C, pH 7.4) were spiked with a range of concentrations of bisphenol-A, carbamazepine and ibuprofen to assess the DOM fluorophores quenched by PPCP interaction in excitation-emission matrices (EEM). Interaction effects on target analyte (PPCP) concentrations were also quantified using direct aqueous injection ultra high performance liquid chromatography tandem mass spectrometry (LC-MS/MS). At low bisphenol-A concentration, WWOM fluorescence was quenched in an EEM region attributed to microbial byproduct-like and humic acid-like DOM components, whereas carbamazepine and ibuprofen quenched fulvic acid-like fluorophores. Fluorescence quenching of SROM by bisphenol-A and carbamazepine was centered on humic acid-like components, whereas ibuprofen quenched the fulvic acid-like fluorophores. Nearly complete LC-MS/MS recovery of all three contaminants was obtained, irrespective of analyte structure and DOM source, indicating relatively weak PPCP-DOM bonding interactions. The results suggest that presence of DOM at environmentally-relevant concentration can give rise to PPCP interactions that could potentially affect their environmental transport, but these DOM-contaminant interactions do not suppress the accurate assessment of target analyte concentrations by aqueous injection LC-MS/MSMS.  相似文献   

16.
Three assumptions were needed to model whole-cell and cell-extract data showing how pH affects the rate and optimum pH of the first step of nitrification: (1) un-ionized ammonia-N is the substrate; (2) substrate ionization occurs; and (3) ampholytic ionization of only the rate-limiting enzyme-substrate complex, and not the free enzyme, controls the rate of ammonia-N oxidation. The rate was shown to obey a Michaelis-Menten rate law where the apparent maximum-velocity coefficient and the apparent half-saturation coefficient with Vm and Km being the Michaelis-Menten maximum-velocity and half-saturation coefficients, respectively; K1 and K2, the acid dissociation coefficients for the enzyme; K3, the acid dissociation coefficient for aqueous ammonium. The optimum pH (pH0) was shown to decrease almost linearly with the logarithm of total ammonia-N concentration over the concentration range found in natural and domestic-waste waters: for N < ppm total ammonia-N.  相似文献   

17.
A routine method is described for the analytical fractionation of dissolved organic matter (DOM) in natural freshwater and in used waters. The fractionation is based on the different adsorption behaviours of various constituents of the DOM on octadecyl-silica as a function of pH. The DOM is separated into a hydrophilic, an acid and a hydrophobic fraction. The detection is carried out by an on-line carbon detector. The method requires only small water samples (20 ml) with low dissolved organic carbon (DOC) concentrations (1–5 mg Cl−1). The samples can be analysed rapidly with no preconcentration. Fractionation of model compounds and mixtures demonstrates the performance of the method. The application of the method is illustrated by an investigation of the changes of the DOC composition occurring in a longitudinal transect of a river and during the infiltration of river water to groundwater.  相似文献   

18.
Waters from five reservoirs and "synthetic waters", prepared using terrestrially derived dissolved organic matter (DOM) extracted from vegetation and reservoir catchment soils, were studied for their treatability with alum using a jar test procedure. DOM in drinking water is a precursor for the formation of trihalomethanes (THM) following chlorine disinfection and can also be a substrate for microbial growth in the drinking water distribution system. The trihalomethane formation potential (THMFP) represents an upper concentration limit on THMs formed by chlorination, while bacterial regrowth potential (BRP) is an indicator of the bioavailability of DOM. BRP and THMFP were measured before and after alum treatment and the results were related to the source of the DOM. It was found that freshly derived terrestrial DOM in synthetic water resulted in higher THMFP and BRP than DOM in reservoir waters. For the samples investigated, conventional alum treatment did not always reduce the THM precursor levels formed in laboratory tests below the NH&MRC (1996) guideline level of 250 microg/L nor produce microbially stable waters.  相似文献   

19.
城市污水生化处理后水中溶解性有机物的特性研究   总被引:1,自引:0,他引:1  
采用XAD树脂分离技术和超滤膜法对青岛市某城市污水处理厂生物化学处理后出水中溶解性有机物(DOM)进行了分类分离,研究了出水中DOM的亲疏水特性及分子量分布规律,探讨了各类DOM组分与芳香度之间的关系.研究结果表明,在DOM中,酸性物质(包括过渡亲水酸性物质和疏水酸性物质)所占比例最高,占总溶解性有机碳(DOC)的79.8%,疏水非酸性物质的芳香度最高,并依疏水酸性物质、过渡亲水酸性物质、亲水性物质的顺序递减,且羰基、羧基、羟基、脂类对芳环的取代程度表现为亲水性物质〈过渡亲水酸性物质〈疏水非酸性物质〈疏水酸性物质;该污水处理厂二级出水中的DOM以小分子量有机物(相对分子质量小于1kDa)为主,其占总DOC的59.13%,表明水中腐殖酸类等难降解有机物质含量较高,增加了消毒副产物的生成势.因此,若该种水体需要深度处理时,应重点考虑提高对腐殖酸类等难降解有机物质的处理程度,确保回用水水质的安全性.  相似文献   

20.
Long-term and seasonal changes in concentration of dissolved organic matter (DOM) and their possible drivers were evaluated for an upland stream in central Europe during 1969–2000. Two periods have been detected within this data set—years with decreased DOM until the middle of 1980s and then years with increased DOM until 2000. Temperature, hydrological regime of runoff from the catchment (namely the amount of interflow), and changes in atmospheric deposition of acidity coincided with the variations in DOM concentrations. The analysis of single runoff events confirmed the relation between the export of increased DOM concentrations from the catchment and interflow. A multiple linear regression model based on monthly averages of temperature and interflow explained 67% of DOM variability. This model suggested a 7% increase in DOM concentration under the scenarios of possible future climate change related to doubled CO2 concentration in the atmosphere. The scenarios were based on results of several global circulation models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号