首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
A multi‐input multi‐output (MIMO) FWRBF‐ARX model, which adopts radial basis function (RBF) neural networks with function‐type weights (FWRBF) to approximate the coefficients of the state‐dependent AutoRegressive model with eXogenous input variables (SD‐ARX), is utilized for describing the dynamics of a coupled tanks liquid system. Based on local linearization information of the MIMO FWRBF‐ARX model, a predictive control strategy is proposed. In the algorithm, the control actions of the model predictive control (MPC) are calculated based on the local linearization of the MIMO FWRBF‐ARX model at current working point. Real‐time control experiments are carried out on the coupled tanks liquid system. The detailed comparative experiments demonstrate the feasibility and effectiveness of the proposed modeling and model‐based control strategy for the coupled tanks plant.  相似文献   

2.
To realize a stable supply of electric power in an automobile, an accurate and reliable detection method of SOC (state‐of‐charge) in a lead acid battery is required. However the dynamics of the battery is very complicated. The characteristics of the battery greatly change due to its degradation. Moreover a automobile has many driving patterns, which are unknown beforehand. Thus it is not easy to detect the SOC analytically. In this paper, to overcome this problem, a new on‐line SOC detection method with a radial basis function neural network is proposed. In order to increase the detection accuracy of degraded batteries, physical values related to the degradation degree are used as input signal in the neural network. The detection accuracies for different sized batteries and various degradation states are investigated.  相似文献   

3.
刘杰  秦晓飞  李峰 《测控技术》2017,36(6):84-87
由于开关磁阻电机的非线性特点,难以建立一个精确的开关磁电机的模型,为了精准建立开关磁阻电机模型,利用径向基函数神经网络良好的非线性映射能力在获取准确磁链样本数据基础上训练神经网络,利用训练的径向基神经网络构建开关磁阻电机非线性模型.在此基础上,采用角度位置控制和电压脉宽调制控制相结合的方法搭建开关磁阻电机驱动控制系统的仿真框架.仿真结果表明:利用径向基函数神经网络的方法可以克服开关磁阻电机的非线性问题,所建立的开关磁阻电机模型可以正常稳定运行.从而证明上述方法的合理有效性.  相似文献   

4.
This paper addresses a terminal sliding mode control (T-SMC) method for load frequency control (LFC) in renewable power systems with generation rate constraints (GRC). A two-area interconnected power system with wind turbines is taken into account for simulation studies. The terminal sliding mode controllers are assigned in each area to achieve the LFC goal. The increasing complexity of the nonlinear power system aggravates the effects of system uncertainties. Radial basis function neural networks (RBF NNs) are designed to approximate the entire uncertainties. The terminal sliding mode controllers and the RBF NNs work in parallel to solve the LFC problem for the renewable power system. Some simulation results illustrate the feasibility and validity of the presented scheme.   相似文献   

5.
This paper proposes a state‐feedback control law for linear parameter‐varying (LPV) systems with input saturation and disturbances. The proposed control law employs two control parts: a main control part for reducing the restricted ??2 gain from the mismatched disturbance to the controlled output and an extra control part for eliminating the matched disturbance. Owing to this feature, the proposed control law provides a better disturbance attenuation performance than the conventional control law that deals with a unified disturbance regardless of the presence of matched and mismatched disturbances. Further, considering different forms of the feedback gain matrix K(θ(t)) and the Lyapunov function V(x(t)), three types of controllers are proposed. For each type, set invariance and the restricted ??2 gain performance conditions are first formulated in terms of parameterized linear matrix inequalities (PLMIs) and then converted into linear matrix inequalities (LMIs) by using a parameter relaxation technique. Results from the simulation of numerical examples confirm the effectiveness of the proposed controllers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This paper proposes a data‐driven approach for model predictive control (MPC) performance monitoring. It explores the I/O data of the MPC system. First, to evaluate the MPC performance and capture the fluctuation of the process variables, we present an overall performance index based on Mahalanobis distance (MDBI) with its deduced benchmark. The Mahalanobis distance can better characterize the change of the process variable in both principal component space and residual space. As the proper vectors of the two spaces are orthogonal, the MDBI eliminates the correlation between the process variables while considering the variables’ characteristics in both spaces simultaneously, which helps evaluate the MPC performance more effectively with fewer monitoring parameters. Furthermore, for the MPC performance diagnosis, we use the MDBI as inputs and construct a support vector machine (SVM) pattern classifier. The classifier can achieve a higher accuracy when recognizing four common performance degradation patterns and determine the root cause of performance degradation. The results of simulations on the Wood‐Berry distillation column process and experiments on NIAT multifunctional experiment platform illustrate the effectiveness of the proposed performance assessment/diagnosis strategies.  相似文献   

7.
This paper develops an effective identification and compensation mechanism for the disturbance‐like parametric friction of a typical underactuated tractor‐trailer vehicle system. To begin with, a parametric friction model is proposed to describe various friction effects associated with the system velocity, and then a disturbance‐like parametric friction concept is introduced by considering the motion characteristics of tractor‐trailer vehicle. Next, the radial basis function neural network (RBFNN) is employed to identify the friction due to its high convergence rate, superior approximation precision and local‐minima avoidance ability. Afterwards, a sliding mode control (SMC) is utilized to compensate the identified friction due to its numerous merits, such as strong robustness and fast convergence. On the basis of the effective combination of identification and compensation mechanism, a favorable transient performance can be achieved during the desired velocity tracking process. Lastly, the simulation results confirm that the RBFNN‐based disturbance‐like parametric friction identification and compensation mechanism can effectively improve the trajectory tracking performance of tractor‐trailer vehicle.  相似文献   

8.
An adaptive backstepping control (ABSC) using a functional link radial basis function network (FLRBFN) uncertainty observer is proposed in this study to construct a high‐performance six‐phase permanent magnet synchronous motor (PMSM) position servo drive system. The dynamic model of a field‐oriented six‐phase PMSM position servo drive is described first. Then, a backstepping control (BSC) system is designed for the tracking of the position reference. Since the lumped uncertainty of the six‐phase PMSM position servo drive system is difficult to obtain in advance, it is very difficult to design an effective BSC for practical applications. Therefore, an ABSC system is designed using an adaptive law to estimate the required lumped uncertainty in the BSC system. To further increase the robustness of the six‐phase PMSM position servo drive, an FLRBFN uncertainty observer is proposed to estimate the lumped uncertainty of the position servo drive. In addition, an online learning algorithm is derived using Lyapunov stability theorem to learn the parameters of the FLRBFN online. Finally, the proposed position control system is implemented in a 32‐bit floating‐point DSP, TMS320F28335. The effectiveness and robustness of the proposed intelligent ABSC system are verified by some experimental results.  相似文献   

9.
杨超  郭佳  张铭钧 《机器人》2018,40(3):336-345
研究了作业型AUV (自主水下机器人)的轨迹跟踪控制问题.实际作业中,水下机械手展开作业过程将引起AUV动力学性能变化,进而影响AUV轨迹跟踪控制;并且水流环境干扰亦将影响AUV轨迹跟踪控制.针对上述AUV轨迹跟踪控制问题,提出一种基于RBF (径向基函数)神经网络的AUV自适应终端滑模运动控制方法.该方法在李亚普诺夫稳定性理论框架下,采用RBF网络对机械手展开引起的AUV动力学性能变化和水流环境干扰进行在线逼近,并结合自适应终端滑模控制器对神经网络权值和AUV控制参数进行自适应在线调节.通过李亚普诺夫稳定性理论,证明AUV系统轨迹跟踪误差一致稳定有界.针对滑模控制项引起的控制量抖振问题,提出一种变滑模增益的饱和连续函数滑模抖振降低方法,以降低滑模控制量抖振.通过AUV实验样机的艏向和垂向的轨迹跟踪实验,验证了本文AUV系统控制方法和滑模降抖振方法的有效性.  相似文献   

10.
This paper investigates the robust model predictive control (RMPC) problem for a class of linear discrete‐time systems subject to saturated inputs and randomly occurring uncertainties (ROUs). Due to limited bandwidth of the network channels, the networked transmission would inevitably lead to incomplete measurements and subsequently unavoidable network‐induced phenomenon that include saturated inputs as a special case. The saturated inputs are assumed to be sector‐bounded in the underlying system. In addition, the ROUs are taken into account to reflect the difficulties in precise system modelling, where the norm‐bounded uncertainties are governed by certain uncorrelated Bernoulli‐distributed white noise sequences with known conditional probabilities. Based on the invariant set theory, a sufficient condition is derived to guarantee the robust stability in the mean‐square sense of the closed‐loop system. By employing the convex optimization technique, the controller gain is obtained by solving an optimization problem with some inequality constraints. Finally, a simulation example is employed to demonstrate the effectiveness of the proposed RMPC scheme.  相似文献   

11.
A new discrete‐time adaptive global sliding mode control (SMC) scheme combined with a state observer is proposed for the robust stabilization of uncertain nonlinear systems with mismatched time delays and input nonlinearity. A state observer is developed to estimate the unmeasured system states. By using Lyapunov stability theorem and linear matrix inequality (LMI), the condition for the existence of quasi‐sliding mode is derived and the stability of the overall closed‐loop system is guaranteed. Finally, simulation results are presented to demonstrate the validity of the proposed scheme.  相似文献   

12.
This research deals with developing an intelligent trajectory tracking control approach for an aircraft in the presence of internal and external disturbances. Internal disturbances including actuators faults, unmodeled dynamics, and model uncertainties as well as the external disturbances such as wind turbulence significantly affect the performance of the common trajectory tracking control approaches. There are several fault‐tolerant control approaches in the literature to overcome the effects of specific actuator or sensor faults during the flight. However, trajectory tracking control of an air vehicle in the presence of unexpected faults and simultaneous presence of wind turbulence is still a challenging problem. In this paper, an intelligent neural network‐based model predictive control structure is proposed, where the prediction model is updated in each iteration based on a novel proposed online sequential multimodel structure. A hybrid offline‐online learning algorithm is adopted in the introduced online sequential multimodel structure to identify the time‐varying dynamics of the system. The proposed control structure can satisfactorily deal with unexpected actuator faults and structural damages as well as unmodeled dynamics and wind turbulence. The stability of the closed‐loop system is proved under some realistic assumptions. The simulation results demonstrate the high capability of the proposed approach for trajectory tracking control of a conventional aircraft in the simultaneous presence of system faults and external disturbances.  相似文献   

13.
Nowadays, fuel cells (FCs) are considered suitable alternative sources for electrical energy applications. One major challenge encountered in FCs is relevant to the performance of the maximum power point tracking (MPPT) under FC parameter changes and load variations. This challenge is due to the nonlinearity and time‐varying dynamics of FC systems. In this paper, the MPPT is studied in a system composed of a FC and a DC‐DC converter. To improve the performance of the MPPT, application of perturbation‐based extremum seeking (PES) and model reference adaptive control (MRAC) is proposed. This control scheme can efficiently handle the uncertainties in the FC as well as the load, through two control levels. The first level is PES utilized to adjust the duty cycle of the DC‐DC converter; and the second level is MRAC employed to achieve the desired dynamic response. Using the proposed control strategy, design and analysis of the control levels can be realized independently, which results in easy implementation. This is achieved due to considerable differences between the time constants of the control levels. The simulation results are utilized to confirm the effectiveness of the proposed scheme in response to the variations of FC parameters and load. Also, comparative studies with a combination of PES and PID controller are provided in the simulation.  相似文献   

14.
An electro‐hydraulic servo system (EHSS) is a kind of system with the characteristics of time‐variant, serious nonlinearity, parameter and structural uncertainty, and uncertain load disturbance in most cases. These characteristics make it very difficult to realize highly accurate control by conventional methods. In order to solve the above problems, this paper introduces a recurrent type 2 fuzzy wavelet neural network to approximate the unknown nonlinear functions of the dynamic systems through tuning by the desired adaptive law. Based on the identification by recurrent type 2 fuzzy wavelet neural network, a L2 gain design method, combining gain adaptive variable sliding mode control with H infinity control, is proposed for load disturbance, thereby accommodating uncertainties that are the main factors affecting system stability and accuracy in EHSS. In this algorithm, a recurrent type 2 fuzzy wavelet neural network is employed to evaluate the unknown dynamic characteristics of the system and gain adaptive variable sliding mode control to compensate for evaluating errors, and H infinity control to suppress the effect on system by load disturbance. The experiment results show that the proposed system L2 gain design method can make the system exhibit strong robustness to parameter variation and load disturbance.  相似文献   

15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号