共查询到20条相似文献,搜索用时 15 毫秒
1.
Jingchun Huang 《Asian journal of control》2014,16(6):1702-1712
This study aims to design an interval type‐2 (IT2) fuzzy static output feedback controller to stabilize the IT2 Takagi‐Sugeno (T‐S) fuzzy system. Conservative results may be obtained when a common quadratic Lyapunov function is utilized to investigate the stability of T‐S fuzzy systems. A fuzzy Lyapunov function is employed in this study to analyze the stability of the IT2 fuzzy closed‐loop system formed by the IT2 T‐S fuzzy model and the IT2 fuzzy static output feedback controller. Stability conditions in the form of linear matrix inequalities are derived. Several slack matrices are introduced to further reduce the conservativeness of stability analysis. The membership‐function shape‐dependent analysis approach is also employed to relax the stability results. The numerical examples illustrate the effectiveness of the proposed conditions. 相似文献
2.
Global Output‐Feedback Stabilization for Stochastic Nonlinear Systems with Function Control Coefficients 下载免费PDF全文
This paper investigates the global output‐feedback stabilization for a class of stochastic nonlinear systems with function control coefficients. Notably, the systems in question possess control coefficients that are functions of output, rather than constants; hence, they are different from the existing literature on stochastic stabilization. To solve the control problem, an appropriate reduced‐order observer is introduced to reconstruct the unmeasured system states before a smooth output‐feedback controller is designed using the backstepping method, which guarantees that the closed‐loop system is globally asymptotically stable in probability. This paper combines the related results in the deterministic and stochastic setting and gives the first treatment on the global output‐feedback stabilization for the stochastic nonlinear systems with function control coefficients. A simulation example is given also to illustrate the effectiveness of the proposed approach. 相似文献
3.
NN‐Based Output‐Feedback Control for Stochastic Nonlinear Systems with Unknown Control Directions 下载免费PDF全文
This paper addresses the neural network‐based output‐feedback control problem for a class of stochastic nonlinear systems with unknown control directions. The restrictions on the drift and diffusion terms are removed and the conditions on unknown control directions are relaxed. By introducing a proper coordinate transformation, and combining dynamic surface control (DSC) technique with radial basis function neural network (RBF NN) approximation approach, we construct an adaptive output‐feedback controller to guarantee the closed‐loop system to be mean square semi‐globally uniformly ultimately bounded (M‐SGUUB). A simulation example demonstrates the effectiveness of the proposed scheme. 相似文献
4.
This paper addresses the global stabilization via adaptive output‐feedback for a class of uncertain nonlinear systems. Remarkably, the systems under investigation are with multiple uncertainties: unknown control directions, unknown growth rates and unknown input bias, and can be used to describe more physical plants. Multiple uncertainties, which usually cannot be compensated by a sole compensation technique, may give rise to big technical difficulty for controller design. To overcome such difficulty and to achieve the global stabilization, a new adaptive output‐feedback scheme is proposed in this paper, by flexibly combining Nussbaum‐type function, tuning function technique and extended state observer. It is shown that, under the designed controller, the system states globally converge to zero. A simulation example on non‐zero set‐point regulation is given to demonstrate the effectiveness of the theoretical results. 相似文献
5.
This paper considers the problem of the control for T‐S fuzzy systems with input time‐varying delay via dynamic output feedback. Firstly, by applying the reciprocally convex approach, new delay‐dependent sufficient condition for performance analysis is obtained. Then, a less conservative condition for the existence of the controllers is given in terms of linear matrix inequalities (LMIs). Moreover, in the considered system, the time‐delay term is included in the measured output. This results in the difficulty in designing the controllers being increased and the obtained results being applied to a wider class of fuzzy systems than the most existing ones. The main contribution of this work lies in the application of the reciprocally convex inequality and the time‐delay term included in the measured output. Finally, the advantages and effectiveness of the present results are shown by several numerical examples. 相似文献
6.
In this paper, we address the positive filtering problem for positive continuous-time systems under the L1-induced performance. A pair of positive filters with error-bounding feature is proposed to estimate the output of positive systems. A novel characterisation is first obtained to ensure that the filtering error system is asymptotically stable with a prescribed L1-induced performance. Then, necessary and sufficient conditions for the existence of required filters are presented, and the obtained results are expressed in terms of linear programming problems, which can be easily checked by standard software. Finally, a numerical example is given to illustrate the effectiveness of the proposed design procedures. 相似文献
7.
In this paper, globally asymptotical stabilization problem for a class of planar switched nonlinear systems with an output constraint via smooth output feedback is investigated. To prevent output constraint violation, a common tangent‐type barrier Lyapunov function (tan‐BLF) is developed. Adding a power integrator approach (APIA) is revamped to systematically design state‐feedback stabilizing control laws incorporating the common tan‐BLF. Then, based on the designed state‐feedback controllers and a constructed common nonlinear observer, smooth output‐feedback controllers, which can make the system output meet the predefined constraint during operation, are proposed to deal with the globally asymptotical stabilization problem of planar switched nonlinear systems under arbitrary switchings. A numerical example is employed to verify the proposed method. 相似文献
8.
Mixed Event/Time‐Triggered Static Output Feedback L2‐Gain Control for Networked Control Systems 下载免费PDF全文
This paper considers the design of mixed event/time‐triggered controllers for networked control systems (NCSs) under transmission delay and possible packet dropout. Assuming that a conventional delayed static output feedback L2‐gain controller exists, we propose an output‐based mixed event/time‐triggered communication scheme for reducing the network traffic in a NCS. Moreover, we show that a conventional delayed static output feedback L2‐gain controller can be obtained by solving a linear matrix inequality with a matrix equality constraint. A numerical example is proposed for demonstrating the theoretical results. 相似文献
9.
Global Practical Tracking for Nonlinear Systems With More Unknowns via Adaptive Output‐Feedback 下载免费PDF全文
This paper investigates the global practical tracking via adaptive output‐feedback for a class of uncertain nonlinear systems. Essentially different from the closely related literature, the system under investigation possesses unknown time‐varying control coefficients and a polynomial‐of‐output growth rate, and meanwhile, the system nonlinearities and the reference signal allow serious unknowns. For this, an adaptive observer is designed to reconstruct the system unmeasured states, where a new dynamic gain is introduced to compensate the serious unknowns in the system nonlinearities and the reference signal. Based on this and by backstepping technique, an adaptive output‐feedback controller is successfully designed, such that all the states of the closed‐loop system are bounded, and the tracking error will be prescribed sufficiently small after a finite time. A numerical simulation is provided to demonstrate the effectiveness of the proposed method. 相似文献
10.
Multiple Lyapunov Functions with Blending for Induced L2‐norm Control of Switched LPV Systems and its Application to an F‐16 Aircraft Model 下载免费PDF全文
Jun Zhao 《Asian journal of control》2014,16(1):149-161
This paper studies the induced L2‐norm problem for switched linear parameter varying (LPV) systems using a blending method. For a switched LPV system where the parameters are grouped into slow‐varying and fast‐varying parameters, the blending method is used to construct blended Lyapunov functions based on the multiple Lyapunov functions conditions in terms of linear matrix inequalities (LMIs). The proposed method is applied to an F‐16 aircraft longitudinal model and the simulation results demonstrate the effectiveness of the approach. 相似文献
11.
This paper studies the problems of L1‐gain analysis and control for switched positive systems with dwell time constraint. The state‐dependent switching satisfies a minimal dwell time constraint to avoid possible arbitrary fast switching. By constructing multiple linear co‐positive Lyapunov functions, sufficient conditions of stability and L1‐gain property are derived under the proposed switching strategy. Then, an effective state feedback controller is designed to ensure the positivity and L1‐gain property of the closed‐loop system. Finally, a simulation example is given to illustrate the effectiveness of the proposed method. 相似文献
12.
Iasson Karafyllis 《国际强度与非线性控制杂志
》2006,16(4):191-214
》2006,16(4):191-214
In this paper the notions of non‐uniform in time robust global asymptotic output stability (RGAOS) and input‐to‐output stability (IOS) for discrete‐time systems are studied. Characterizations as well as links between these notions are provided. Particularly, it is shown that a discrete‐time system with continuous dynamics satisfies the non‐uniform in time IOS property if and only if the corresponding unforced system is non‐uniformly in time RGAOS. Necessary and sufficient conditions for the solvability of the robust output feedback stabilization (ROFS) problem are also given. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
13.
离散时间双切换线性正系统是同时受到确定切换信号和Markov随机切换信号共同影响的系统。鲁棒稳定以及扰动抑制问题是研究混杂系统稳定性的重要问题,但双切换正系统的扰动抑制问题研究较少。基于此研究背景,提出了新型的切换系统——具有指数不确定性的离散时间双切换线性正系统(DDSLPS),通过构建Co-positive Lyapunov能量衰减函数,利用线性编程(LP)得到确保DDSLPS在持续驻留时间(PDT)约束下系统满足鲁棒指数几乎处处稳定(Robust-EAS)的充分条件。另外,将此方法推广到DDSLPS的L1增益分析中,得到闭环系统在鲁棒指数几乎处处稳定下满足L1性能指标x的充分条件。利用Matlab数值仿真,验证了所用方法的有效性和所得结果的正确性。 相似文献
14.
This paper is to consider dynamic output feedback H∞ control of mean‐field type for stochastic discrete‐time systems with state‐ and disturbance‐dependent noise. A stochastic bounded real lemma (SBRL) of mean‐field type is derived. Based on the SBRL, a sufficient condition with the form of coupled nonlinear matrix inequalities is derived for the existence of a stabilizing H∞ controller. Moreover, a numerical example is given to examine the effectiveness of the theoretical results. 相似文献
15.
Yan Lin 《Asian journal of control》2013,15(5):1337-1345
This paper presents a robust adaptive output‐feedback dynamic surface control (DSC) for a class of nonlinear systems with unmodeled dynamics or/and uncertain time‐varying disturbances. Based on traditional K‐filters, the proposed adaptive DSC scheme is able to guarantee semi‐global stability of the closed‐loop system without applying any approximation techniques. The adaptive law is necessary only at the first design step, which, together with the introduction of a first‐order filter at each design step, makes the control law easy to implement. Moreover, it is shown that the tracking error can converge to an arbitrarily small residual set by adjusting only one design parameter. 相似文献
16.
This paper revisits the static output‐feedback stabilization problem for positive systems. We first point out that for a class of positive systems whose output matrix has a particular row echelon form, this problem can be completely solved via linear programming. By duality, the result is also valid when the column echelon form of the input matrix has a particular structure. Along this line, by augmenting the output matrix as well as the feedback gain matrix, an iterative convex optimization algorithm is developed for the more general case. Finally, we show that the proposed method has advantages over existing works via several numerical examples. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
An H∞‐type control is considered for mean‐field stochastic differential equations (SDEs) in this paper. A stochastic bounded real lemma (SBRL) is proved for mean‐field stochastic continuous‐time systems with state‐ and disturbance‐dependent noise. Based on SBRL, a sufficient condition is given for the existence of a stabilizing H∞ controller in terms of coupled nonlinear matrix inequalities. 相似文献
18.
This paper is concerned with the observer‐based H∞ control for continuous‐time networked control systems (NCSs) considering packet dropouts and network‐induced delays. The packet dropouts and network‐induced delays in the sensor‐to‐controller (S‐C) channel and network‐induced delays in the controller‐to‐actuator (C‐A) channel are taken into full consideration. By taking the non‐uniform distribution characteristic of the arrival instants of actually adopted controller inputs into account, a new model for continuous‐time NCSs is established. To reduce the conservatism of modelling, a linear estimation‐based measurement output estimation method is introduced. Based on the newly established model and a Lyapunov functional, new controller design methods are proposed. A numerical example is given to illustrate the effectiveness and merits of the derived results. 相似文献
19.
The problem of robust decentralized control of positive fractional‐order interconnected systems with heterogeneous time‐varying delays is studied in this paper. Necessary and sufficient conditions are first derived for internal positiveness of the system. By exploiting the monotonicity induced from positivity of the system, robust stability conditions subject to uncertain system parameters are derived. The derived stability conditions are then utilized to address the controller synthesis problem. The design conditions for obtaining controller gains of stabilizing decentralized controllers are formulated using linear programming, which can be effectively solved by various convex optimization algorithms. Finally, the effectiveness of the obtained results is validated by two numerical examples. 相似文献
20.
Changchun Hua 《Asian journal of control》2014,16(6):1726-1734
This paper is concerned with the problems of delay‐dependent stability and static output feedback (SOF) control of two‐dimensional (2‐D) discrete systems with interval time‐varying delays, which are described by the Fornasini‐Marchesini (FM) second model. The upper and lower bounds of delays are considered. Applying a new method of estimating the upper bound on the difference of Lyapunov function that does not ignore any terms, a new delay‐dependent stability criteria based on linear matrix inequalities (LMIs) is derived. Then, given the lower bounds of time‐varying delays, the maximum upper bounds in the above LMIs are obtained through computing a convex optimization problem. Based on the stability criteria, the SOF control problem is formulated in terms of a bilinear matrix inequality (BMI). With the use of the slack variable technique, a sufficient LMI condition is proposed for the BMI. Moreover, the SOF gain can be solved by LMIs. Numerical examples show the effectiveness and advantages of our results. 相似文献