首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper is concerned with the problem of observer‐based control for a class of uncertain neutral‐type systems subjected to external disturbance by utilizing sliding mode technique. A novel sliding mode control (SMC) strategy is proposed based on the state estimate and the output. A new sufficient condition of robust asymptotic stability with disturbance attenuation level for the overall systems composed of the original system and error system in the sliding mode is derived in terms of a linear matrix inequality (LMI). Then, a new adaptive controller is designed to guarantee the reachability of the predefined sliding surface in finite‐time. Finally, numerical examples are provided to verify the effectiveness of the proposed method.  相似文献   

2.
In this paper we address the problems of observer and observer‐based controller design for a class of nonlinear time‐delay singular systems. The proposed methods use particular Lyapunov functions depending on the disturbances in order to avoid a specific obstacle in the stability analysis. Consequently, two linear matrix inequality (LMI) conditions ensuring the convergence of the estimation error and the closed loop system were presented. These LMIs were obtained by manipulating Young's inequality in order to linearize some bilinear terms.  相似文献   

3.
A reliable decentralized supervisory control framework for discrete‐event systems is proposed to deal with possible actuation failures and communication delays. We mainly focus on the existence of such a controller that the control performance can be guaranteed even in face of local supervisor failures and communication delays. Especially, the existence of k‐reliable decentralized supervisors under communication delays is characterized by the notion of k‐reliable together with . In addition, the verification for k‐reliable decentralized supervisors is investigated by developing a constructive methodology to test the k‐reliable . It is shown that for a given number of distributed components, the existence of such k‐reliable decentralized supervisors can be checked with a polynomial complexity in the size of the state space.  相似文献   

4.
In this paper, a methodology for designing an output feedback controller for discrete‐time networked control systems has been considered. More precisely, network‐induced delays between the sensor and the controller is modelled by a Markov chain with transition probabilities which are not assumed to be fully known. The systems parameter uncertainties are assumed to be norm‐bounded and possibly time‐varying. To the best of the authors knowledge, the problem of designing a partially mode delay‐dependent output feedback controller for NCSs with partially known transition probability matrix has not been investigated in the literature. Based on the Lyapunov‐Krasovskii functional approach, sufficient conditions for the existence of a robust partially mode delay‐dependent output feedback controller are given in terms of bilinear matrix inequalities which can be solved using a cone complementarity linearization algorithm. The proposed design methodology differs from the existing design methodologies in that dynamic output feedback controllers are parameterized by both modes and transition probabilities, as opposed to the existing design approaches which parameterize controllers by modes only. The results obtained reduce to the existing results on fully known transition matrices when transition probabilities are fully known. It is shown that the proposed methodology can be applied to real world systems. The proposed design methodology is verified by using a DC servo motor system where the plant and the controller are connected via a cellular network with partially known transition probability matrix.  相似文献   

5.
This paper studies a consensus problem for lth (l ≥ 2) order multi‐agent systems with digraph, namely, for a fixed r (0 ≤ rl ? 1), the rth derivative of the states xi of agents are convergent to a constant value and, for every k (0 ≤ kl ? 1), are convergent to zeros. A new concept of r‐consensus is introduced and new consensus protocols are proposed for solving such an r‐consensus problem. A sufficient and necessary condition for r‐consensus is obtained. As special cases, criteria for third‐order systems are given, in which the exact relationship between feedback gains is established. Finally, an illustrative example is given to demonstrate the effectiveness of these protocols.  相似文献   

6.
This paper considers the adaptive control problem for piecewise affine systems (PWS), a novel synthesis framework is presented based on the piecewise quadratic Lyapunov function (PQLF) instead of the common quadratic Lyapunov function to achieve the less conservatism. First, by designing the projection‐type piecewise adaptive law, the problem of the adaptive control of PWS can be reduced to the control problem of augmented piecewise systems. Then, we construct the piecewise affine control law for augmented piecewise systems in such a way that the PQLF can be employed to establish the stability and performance. In particular, the Reciprocal Projection Lemma is employed to formulate the synthesis condition as linear matrix inequalities (LMIs), which enables the proposed PQLF approach to be numerically solvable. Finally, an engineering example is shown to illustrate the synthesis results.  相似文献   

7.
This paper is aimed at exploring dynamic surface control (DSC) for a class of uncertain nonlinear systems in strict‐feedback form with time delays. Combining the Finite Covering Lemma (Heine‐Borel Theorem) with neural networks, a novel method is proposed to approximate time delay terms, which leads to the abandonment of traditional Lyapunov‐Krasovskii functionals. Then, a surface error modification and an initialization technique are proposed to guarantee the tracking performance. Moreover, by applying a newly‐developed neural network based adaptive control technique, it is shown that the update law for the proposed DSC scheme is needed only at the last design step with only one parameter being estimated online, which significantly reduces the computational burden, compared with current DSC schemes. Simulation results are presented to illustrate the efficiency of the proposed scheme.  相似文献   

8.
Disturbance observer‐based elegant anti‐disturbance control (DOBEADC) scheme is proposed for a class of stochastic systems with nonlinear dynamics and multiple disturbances. The stochastic disturbance observer based on pole placement is constructed to estimate disturbance which is generated by an exogenous system. Then, composite DOBC and controller is designed to guarantee the composite system is mean‐square stable and its performance satisfies a prescribed level. Finally, simulations on an A4D aircraft model show the effectiveness of the proposed approaches.  相似文献   

9.
To guarantee the position and velocity tracking performance of high speed trains (HSTs) with actuator faults, a composite control algorithm consisting of the disturbance‐observer‐based control (DOBC) and control is proposed. Based on the multiple point‐mass model, the dynamics of HSTs is established by a cascade of carriages which are connected by flexible couplers, during the procedure of which, the running resistance, actuator faults and multiple disturbances are taken into account. The multiple disturbances are composed of two parts, one of which is the ramp resistance due to the track slope, the other is unknown gusts which can be modeled as a harmonic disturbance with time‐varying frequency. The unknown gusts is estimated and rejected via the DOBC methodology, meanwhile, the running resistance and the ramp resistance are attenuated by the control methodology. According to the Lyapunov stability analysis and LMI‐based algorithms, main results are derived such that the closed‐loop system is asymptotically stable and the desired performance can be guaranteed. Compared with the numeral simulation results with the single control method, it is demonstrated that the proposed control methodology is more effective and the system has a higher precision of position and velocity tracking.  相似文献   

10.
This paper considers the problem of the control for T‐S fuzzy systems with input time‐varying delay via dynamic output feedback. Firstly, by applying the reciprocally convex approach, new delay‐dependent sufficient condition for performance analysis is obtained. Then, a less conservative condition for the existence of the controllers is given in terms of linear matrix inequalities (LMIs). Moreover, in the considered system, the time‐delay term is included in the measured output. This results in the difficulty in designing the controllers being increased and the obtained results being applied to a wider class of fuzzy systems than the most existing ones. The main contribution of this work lies in the application of the reciprocally convex inequality and the time‐delay term included in the measured output. Finally, the advantages and effectiveness of the present results are shown by several numerical examples.  相似文献   

11.
A dynamic antiwindup compensator for input saturating linear systems with input and state delays is applied to active queue management of a congested TCP/IP router subjected to TCP and UDP flows. Its synthesis is based on the Lyapunov‐Krasovskii functional, the Finsler lemma, linear matrix ineqality conditions and minimization of the of the disturbance to the system output.  相似文献   

12.
In this paper we deal with the mixed  /finite‐time stability control problem. More specifically, given an open loop uncertain linear system, we provide a necessary and sufficient condition for quadratic input‐output finite‐time stability with an  bound. Exploiting this result we also give a sufficient condition to solve the related synthesis problem via state‐feedback. The property of quadratic input‐output finite‐time stability with an  bound implies that the system under consideration satisfies an  performance bound between the disturbance input and the controlled output and, at the same time, is input‐output finite‐time stable for all admissible uncertainties. This condition requires the solution of a feasibility problem constrained by a pair of differential linear matrix inequalities (LMIs) coupled with a time‐varying LMI. The proposed technique is illustrated by means of both a numerical and a physical example.  相似文献   

13.
This paper investigates the fixed‐time attitude tracking problem for rigid spacecraft in the presence of inertial uncertainties, external disturbances, actuator faults, and input saturation constraints. The logarithm map is first utilized to transform the tracking problem on SO(3) into the stabilization one on its associated Lie algebra ( ). A novel nonsingular fixed‐time‐based sliding mode is designed, which not only avoids the singularity but also guarantees that the convergence time of tracking errors along the sliding surface is independent of the state value. Then, an adaptive fault‐tolerant control law is constructed, in which an online adaptive law is incorporated to estimate the upper boundary of the lumped uncertainties. The combined control scheme enforces the system state to reach a neighborhood of the sliding surface in the sense of the fixed‐time concept. The key feature of the resulting control scheme is that it can accommodate actuator failures under limited control torque without the knowledge of fault information. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed fixed‐time controllers.  相似文献   

14.
This paper considers the problem of achieving a very accurate tracking of a pre‐specified desired output trajectory , for linear, multiple input multiple output, non‐minimum phase and/or non hyperbolic, sampled data, and closed loop control systems. The proposed approach is situated in the general framework of model stable inversion and introduces significant novelties with the purpose of reducing some theoretical and numerical limitations inherent in the methods usually proposed. In particular, the new method does not require either a preactuation or null initial conditions of the system. The desired and the corresponding sought input are partitioned in a transient component ( and ut(k), respectively) and steady‐state ( and us(k), respectively). The desired transient component is freely assigned without requiring it to be null over an initial time interval. This drastically reduces the total settling time. The structure of ut(k) is a priori assumed to be given by a sampled smoothing spline function. The spline coefficients are determined as the least‐squares solution of the over‐determined system of linear equations obtained imposing that the sampled spline function assumed as reference input yield the desired output over a properly defined transient interval. The steady‐state input us(k) is directly analytically computed exploiting the steady‐state output response expressions for inputs belonging to the same set of .  相似文献   

15.
This paper investigates the problem of quantized filtering for a class of continuous‐time Markovian jump linear systems with deficient mode information. The measurement output of the plant is quantized by a mode‐dependent logarithmic quantizer, and the deficient mode information in the Markov stochastic process simultaneously considers the exactly known, partially unknown, and uncertain transition rates. By fully exploiting the properties of transition rate matrices, together with the convexification of uncertain domains, a new sufficient condition for quantized performance analysis is first derived, and then two approaches, namely, the convex linearization approach and iterative approach, to the filter synthesis are developed. It is shown that both the full‐order and reduced‐order filters can be obtained by solving a set of linear matrix inequalities (LMIs) or bilinear matrix inequalities (BMIs). Finally, two illustrative examples are given to show the effectiveness and less conservatism of the proposed design methods.  相似文献   

16.
The paper derives a robust networked controller design method for systems with saturation where the delay is large and uncertain, as in one‐directional data flow‐control. A classical linear H criterion is first formulated in terms of the sensitivity and complementary sensitivity functions. A new asymptotic constraint is then derived, which specifies the minimum amount of low frequency gain that is needed in the sensitivity function to conclude on non‐linear closed loop ‐stability using the Popov criterion. This result guides the selection of the design criterion, thereby adjusting the linear controller design for better handling of delay and saturation. The controller design method then uses gridding to pre‐compute a subset of the stability region. Based on the pre‐computed region, a robust ‐stable controller can be selected. Alternatively, an adaptive controller could recompute ‐stable controllers on‐line using the pre‐computed region. Simulations show that the controller meets the specified stability and performance requirements.  相似文献   

17.
In this paper, the sliding mode control for a class of uncertain discrete‐time singular system with performance constraint is studied. By taking the singular matrix E into consideration, a new type of integral sliding mode surface is firstly introduced, based on which a sufficient condition is derived to guarantee the sliding mode dynamics admissible with a given γ‐level disturbance attenuation of the unmatched disturbance. A controller law is also given to keep the system trajectory staying in a neighborhood of the ideal sliding surface. Finally, a numerical example is given to show the effectiveness of the proposed approach.  相似文献   

18.
This paper is devoted to output‐feedback adaptive control for a class of multivariable nonlinear systems with both unknown parameters and unknown nonlinear functions. Under the Hurwitz condition for the high‐frequency gain matrix, a robust adaptive backstepping control scheme is proposed, which is able to guarantee the tracking performance and needs only one parameter to be updated online regardless of the system order and input–output dimension. To cope with the unknown nonlinear functions and improve the tracking performance, a kind of high‐gain K‐filters is introduced. It is proved that all signals of the closed‐loop system are globally uniformly bounded. Simulation results on coupled inverted double pendulums are presented to illustrate the effectiveness of the proposed scheme. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This paper deals with the trajectory tracking problem of a six‐degree of freedom (6‐DOF) quadrotor unmanned aerial vehicle (UAV). The problem of simplified kinematics based on Euler angles is analyzed and the modified Rodrigues parameters (MRPs) technique is introduced to model the rotational dynamics of the rigid body. A nonlinear system error model is established based on the trajectory tracking problem, and, due to the coupling property between the translational and rotational dynamics, we divide the complete closed‐loop system into two reduced‐order subsystems and a coupling term. The Rodrigues theorem is applied to analyze the internal connections between the coupling term and MRPs. Therefore, the global stability conclusions, by which the trajectory tracking controller of the quadrotor UAV could be designed based on the subsystem directly in future works, are proved based on several assumptions of the subsystems. Thereafter, the controllers, using the backstepping approach and nonlinear disturbance observer/sliding mode control approach, which stabilize the quadrotor UAV globally ‐exponentially and globally uniformly bounded, are proposed based on the stability theorem proofs mentioned above. Numerical simulations are provided to show that the theoretical conclusions and the controller proposed are effective.  相似文献   

20.
This paper presents an optimal design of sliding mode controller with a constraint for a general class of uncertain systems. The method proposed here takes into account nonmatching disturbance signals and nonmatching system model uncertainties. Without requiring any transformation or restriction on the input matrix, our approach leads to a straightforward design which can be easily solved by using linear matrix inequality (LMI) technique. By solving the problem of optimal sliding motion design with some quadratic constraints based on LMIs, a mixed approach is presented to reduce the effect of uncertainties and disturbances on the sliding motion. Finally, we give simulation results for controlling a chemical reactor to illustrate the applicability of the proposed scheme for uncertain time‐delay systems or mismatched uncertain systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号