首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper proposes a novel adaptive backstepping control method for parametric strict‐feedback nonlinear systems with event‐sampled state and input vectors via impulsive dynamical systems tools. In the design procedure, both the parameter estimator and the controller are aperiodically updated only at the event‐sampled instants. An adaptive event sampling condition is designed to determine the event sampling instants. A positive lower bound on the minimal intersample time is provided to avoid Zeno behavior. The closed‐loop stability of the adaptive event‐triggered control system is rigorously proved via Lyapunov analysis for both the continuous and jump dynamics. Compared with the periodic updates in the traditional adaptive backstepping design, the proposed method can reduce the computation and the transmission cost. The effectiveness of the proposed method is illustrated using 2 simulation examples.  相似文献   

2.
This paper devotes to the stability of aperiodic sampled‐data systems with time‐delay control, where the delays can impose a positive effect on the stability of the systems. The systems are modeled as impulsive switched systems with fixed switching laws. A novel separation theorem is presented to determine the Schur property of a matrix product and then used to obtain a less conservative stability criterion for the impulsive switched systems with fixed switching laws. By the separation theorem and a loop‐functional approach, some new stability and stabilization criteria for aperiodic sampled‐data systems with time‐delay control are provided in terms of linear matrix inequalities. Finally, the stability and stabilization results are tested on some classical numerical examples to illustrate the efficiency of the proposed method.  相似文献   

3.
In this paper, we develop an innovative control method for linear systems with time‐varying delay by integrating the semi‐discretization method and the hysteresis‐based switching algorithm. The semi‐discretization method is adopted to design an optimal controller for each fixed time‐delay and form a candidate controller family. The switching algorithm acts as the principal law for switching among various controllers according to the instantaneous value of the time‐delay. A theoretical proof is presented regarding the stability of the switching time‐delay system. It is shown that the most significant factors that affect the system stability are the size of the candidate controller family, the value of the switching coefficient, and the changing rate of the time‐delay. Two case studies are presented to show the effectiveness of the proposed method.  相似文献   

4.
The stability of uncertain periodic and pseudo‐periodic systems with impulses is analyzed in the looped‐functional and clock‐dependent Lyapunov function frameworks. These alternative and equivalent ways for characterizing discrete‐time stability have the benefit of leading to stability conditions that are convex in the system matrices, hence suitable for robust stability analysis. These approaches, therefore, circumvent the problem of computing the monodromy matrix associated with the system, which is known to be a major difficulty when the system is uncertain. Convex stabilization conditions using a non‐restrictive class of state‐feedback controllers are also provided. The obtained results readily extend to uncertain impulsive periodic and pseudo‐periodic systems, a generalization of periodic systems that admit changes in the ‘period’ from one pseudo‐period to another. The obtained conditions are expressed as infinite‐dimensional semidefinite programs, which can be solved using recent polynomial programming techniques. Several examples illustrate the approach, and comparative discussions between the different approaches are provided. A major result obtained in the paper is that despite being equivalent, the approach based on looped functional reduces to the one based on clock‐dependent Lyapunov functions when a particular structure for the looped functional is considered. The conclusion is that the approach based on clock‐dependent Lyapunov functions is preferable because of its lower computational complexity and its convenient structure enabling control design. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
This paper is devoted to the problem of computing control laws for the stabilization of continuous‐time linear time‐varying systems. First, a necessary and sufficient condition to assess the stability of a linear time‐varying system based on the norm of the transition matrix computed over a sequence of successive finite‐time intervals is proposed. A link with a stability condition for an equivalent discrete‐time model is also established. Then, 3 approaches for the computation of stabilizing state‐feedback gains are proposed: a continuous‐time technique, ie, directly derived from the stability condition, not suitable for numerical implementation; a method based on the stabilization of the discrete‐time equivalent model along with a transformation to generate the desired continuous‐time gain; and the computation of stabilizing gains for a set of periodic discrete‐time systems. Finally, by adapting one of the existing methods for the stabilization of periodic discrete‐time systems, an algorithm for the computation of a stabilizing state‐feedback continuous‐time gain is proposed. A numerical example illustrates the validity of the technique.  相似文献   

6.
The paper investigates the robust stability and performance of uncertain linear time‐varying (LTV) systems using an integral quadratic constraint (IQC) based analysis approach. Specifically, previous theoretical work on IQC‐based robustness analysis of linear time‐invariant (LTI) systems is extended to discrete‐time LTV systems. In the case of a general LTV nominal system, the analysis solution is provided in terms of an infinite‐dimensional convex optimization problem. This optimization problem reduces into a finite‐dimensional semidefinite program when the nominal system in question is finite horizon, periodic, or, more generally, eventually periodic. Finally, the results are applied to an unmanned aircraft control system executing an aggressive maneuver, where the developed techniques are used to find the region in which the aircraft is guaranteed to reside at the end of its planned trajectory. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
In this paper, the distributed observer‐based stabilization problem of multi‐agent systems under a directed graph is investigated. Distributed observer‐based control protocol with sampled‐data information is proposed. The dynamics of each agent contain a nonlinear part, which is supposed to be general Lipschitz. In order to stabilize the states of the whole network, all the nodes utilize the relative output estimation error at sampling instants and only a small fraction of nodes use the absolute output estimation error additionally. By virtue of the input‐to‐state stability (ISS) property and the Lyapunov stability theory, an algorithm to design the control gain matrix, observer gain matrix, coupling strength as well as the allowable sampling period are derived. The conditions are in the form of LMIs and algebraic inequality, which are simple in form and easy to verify. Some further discussions about the solvability of obtained linear matrix inequalities (LMIs) are also given. Lastly, an example is simulated to further validate the obtained results.  相似文献   

8.
In many mechanical devices with chaotic behavior, stabilizing unstable periodic orbits (UPOs) of the system has positive effects in the lifetime and effectiveness of these devices. In this study, a new non‐parallel distributed compensation (non‐PDC) observer‐based tracking controller is presented for Takagi–Sugeno fuzzy systems to control the chaotic behavior of such systems. Asymptotic stability synthesis of the closed‐loop system is investigated using a fuzzy Lyapunov function to derive less conservative conditions than common quadratic Lyapunov function‐based approaches. To tackle the main drawback of the fuzzy Lyapunov‐based approaches, which assume some upper bounds on the derivatives of the fuzzy grade functions, we propose a new procedure by considering a constraint on the control signal. The new design conditions are given in the form of linear matrix inequalities (LMIs). The proposed control structure is applied to spinning disks in which chaos phenomena appear in lateral vibration. Simulation results are given to show the applicability of the proposed tracker to the UPO problem.  相似文献   

9.
In this paper, a decentralized event‐based triggering mechanism for a class of nonlinear control systems is studied. It is assumed that the measurement sensors are geographically distributed and so local event generator modules are employed. Then, a novel periodic triggering condition is proposed for each module, which can potentially reduce the information exchange between subsystems compared with traditional control approaches, while maintaining closed‐loop asymptotic stability. The triggering condition parameters are designed through a convex optimization problem with LMI constraints. Finally, simulations are carried out to illustrate the performance of the introduced scheme. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

10.
A novel discrete‐time repetitive controller design for time‐delay systems subject to a periodic reference and exogenous periodic disturbances is presented. The main idea behind the proposed approach is to take advantage of the plant delay in the controller design, and not to compensate for the effect of this delay. To facilitate this concept, we introduce an appropriate time‐delay and a compensator in a positive feedback connection with the plant, such that a generator for periodic signals is constructed. Then a proportional controller is used to stabilize the closed‐loop system. The tracking control capability is thus guaranteed according to the internal model principle (IMP). In addition, to attenuate external periodic disturbances, a disturbance observer (DO) is developed to simultaneously achieve reference tracking and disturbance rejection. The possible fractional delay due to the digital discretization is handled by using a fractional delay filter approximation. The proposed controller has a simple structure, in which only a proportional parameter and a low‐pass filter are required to be chosen. The closed‐loop stability conditions and a robustness analysis under model uncertainties are studied. Numerical simulations and practical experiments on a servo motor system are conducted to verify the feasibility and simplicity of the proposed controller. Copyright © 2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

11.
Semi‐Markovian jump systems are more general than Markovian jump systems in modeling practical systems. On the other hand, the finite‐time stochastic stability is also more effective than stochastic stability in practical systems. This paper focuses on the finite‐time stochastic stability, exponential stochastic stability, and stabilization of semi‐Markovian jump systems with time‐varying delay. First, a new stability condition is presented to guarantee the finite‐time stochastic stability of the system by using a new Lyapunov‐Krasovskii functional combined with Wirtinger‐based integral inequality. Second, the stability criterion is further proved to guarantee the exponential stochastic stability of the system. Moreover, a controller design method is also presented according to the stability criterion. Finally, an example is provided to illustrate that the proposed stability condition is less conservative than other existing results. Additionally, we use the proposed method to design a controller for a load frequency control system to illustrate the effectiveness of the method in a practical system of the proposed method.  相似文献   

12.
In this paper, the problem of boundary finite‐time stabilization is considered for reaction‐diffusion systems (RDSs). First, a full‐domain controller is designed, and sufficient conditions are given to ensure finite‐time stability of RDSs under the designed controller. Then, for practical applications, a boundary controller is designed to obtain finite‐time stability. By virtue of the finite‐time stability lemma, criteria are presented to guarantee the finite‐time stability of RDSs for the Neumann boundary conditions and the mixed boundary conditions. As an extension to uncertain RDSs, robust finite‐time stabilization is studied, and criterion is obtained under the boundary control. Numerical simulations verify the effectiveness of the proposed design techniques.  相似文献   

13.
In this paper, we propose a new design method of discrete‐valued model predictive control for continuous‐time linear time‐invariant systems based on sum‐of‐absolute‐values (SOAV) optimization. The finite‐horizon discrete‐valued control design is formulated as an SOAV optimal control, which is an expansion of L1 optimal control. It is known that under the normality assumption, the SOAV optimal control exists and takes values in a fixed finite alphabet set if the initial state lies in a subset of the reachable set. In this paper, we analyze the existence and discreteness property for systems that do not necessarily satisfy the normality assumption. Then, we extend the finite‐horizon SOAV optimal control to infinite‐horizon model predictive control (MPC). We give sufficient conditions for the recursive feasibility and the stability of the MPC‐based feedback system in the presence of bounded noise. Simulation results show the effectiveness of the proposed method.  相似文献   

14.
This paper considers the input‐to‐state stability, integral‐ISS, and stochastic‐ISS for impulsive nonlinear stochastic systems. The Lyapunov function considered in this paper is indefinite, that is, the rate coefficient of the Lyapunov function is time‐varying, which can be positive or negative along time evolution. Lyapunov‐based sufficient conditions are established for ensuring ISS of impulsive nonlinear stochastic systems. Three examples involving one from networked control systems are provided to illustrate the effectiveness of theoretical results obtained. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
This paper deals with robust stability and stabilization of linear discrete‐time systems subject to uncertainties and network constraints. In network control systems, the control loop is closed over a network, which induces additional dynamics to the original control loop such as delays, sampling, and quantization among many others. This paper focuses on networked induced delays due to unreliable network for which packet losses may occur. An equivalent periodic‐like representation of the resulting system is proposed. This allows first to revisit existing results in this framework and second to take model uncertainties into account by analyzing the closed‐loop model by means of a recent method based on robust control for discrete‐time time‐varying systems. Stability analysis and dynamic state‐feedback stabilization are characterized via new conditions, whose conservatism is extensively discussed. Effectiveness of the proposed methodology is illustrated by numerical examples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The problem of robust absolute stability for time‐delay Lur'e systems with parametric uncertainties is investigated in this paper. The nonlinear part of the Lur'e system is assumed to be both time‐invariant and time‐varying. The structure of uncertainty is a general case that includes norm‐bounded uncertainty. Based on the Lyapunov–Krasovskii stability theory, some delay‐dependent sufficient conditions for the robust absolute stability of the Lur'e system will be derived and expressed in the form of linear matrix inequalities (LMIs). These conditions reduce the conservativeness in computing the upper bound of the maximum allowed delay in many cases. Numerical examples are given to show that the proposed stability criteria are less conservative than those reported in the established literatures.  相似文献   

17.
The paper considers the parametric absolute stabilization for interconnected Lurie time‐delay systems with polytopic uncertainty. The concept of parametric absolute stabilization characterizes both the existence and the stability of equilibrium in the case of uncertain parameters and reference input shift. First, the existing conditions of parametric stability and the stable region are studied by the change of the uncertain parameters and reference input based on decentralized state feedback. Then, a delay‐dependent absolute stability condition in parametric stabilization region for interconnected Lurie time‐delay systems with polytopic uncertainties is obtained through a linear matrix inequality method. Finally, an example is given to illustrate the effectiveness of the proposed method.  相似文献   

18.
In this paper, a general method is developed to generate a stable adaptive fuzzy semi‐decentralized control for a class of large‐scale interconnected nonlinear systems with unknown nonlinear subsystems and unknown nonlinear interconnections. In the developed control algorithms, fuzzy logic systems, using fuzzy basis functions (FBF), are employed to approximate the unknown subsystems and interconnection functions without imposing any constraints or assumptions about the interconnections. The proposed controller consists of primary and auxiliary parts, where both direct and indirect adaptive approaches for the primary control part are aiming to maintain the closed‐loop stability, whereas the auxiliary control part is designed to attenuate the fuzzy approximation errors. By using Lyapunov stability method, the proposed semi‐decentralized adaptive fuzzy control system is proved to be globally stable, with converging tracking errors to a desired performance. Simulation examples are presented to illustrate the effectiveness of the proposed controller. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
This paper studies local control of discrete‐time periodic linear systems subject to input saturation by using the multi‐step periodic invariant set approach. A multi‐step periodic invariant set refers to a set from which all trajectories will enter a periodic invariant set after finite steps, remain there forever, and eventually converge to the origin as time approaches infinity. The problems of (robust) estimation of the domain of attraction, (robust) local stabilization (with bounded uncertainties), and disturbance rejection are considered. Compared with the conventional periodic invariant set approach, which has been used in the literature for local stability analysis and stabilization of discrete‐time periodic linear systems subject to input saturation, this new invariant set approach is capable of significantly reducing the conservatism by introducing additional auxiliary variables in the set invariance conditions. Moreover, the new approach allows to design (robust) stabilizing periodic controller, in the presence of norm bounded uncertainties, whose period is the same as the open‐loop system and is different from the existing periodic enhancement approach by which the period of the controller is multiple times of the period of the open‐loop system. Several numerical examples are worked out to show the effectiveness of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Semi‐Markovian jump systems, due to the relaxed conditions on the stochastic process, and its transition rates are time varying, can be used to describe a larger class of dynamical systems than conventional full Markovian jump systems. In this paper, the problem of stochastic stability for a class of semi‐Markovian systems with mode‐dependent time‐variant delays is investigated. By Lyapunov function approach, together with a piecewise analysis method, a sufficient condition is proposed to guarantee the stochastic stability of the underlying systems. As more time‐delay information is used, our results are much less conservative than some existing ones in literature. Finally, two examples are given to show the effectiveness and advantages of the proposed techniques. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号