首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
在已内酰胺水解聚合时加入一定量的可反应型复合胺类改性剂(HAS),合成了含有胺类改性剂的尼龙6树脂,经纺丝后得到尼龙6纤维.研究了该改性剂及pH值、染色温度、时间等染色条件对尼龙6纤维染色性能的影响.结果表明:尼龙6纤维采用酸性AGL上染时,其染色性与染色条件有关;在相同的染色条件下,HAS改性尼龙6纤维的染料上染量均大于未改性样的上染量.由于酸性染料分子除了以范德华力和氢键的形式与纤维结合外,还会与纤维生成盐键结合,因此上染量的增加是由于改性后尼龙6纤维的端氨基增加的缘故.  相似文献   

2.
复合胺改性PA6纤维的染色动力学与热力学研究   总被引:3,自引:0,他引:3  
在己内酰胺水解聚合时加入一定量的可反应型复合胺类政性剂(HAS),合成含有HAS的PA6树脂,经纺丝得到PA6纤维。选择酸性蓝AGL染料,研究了HAS改性PA6纤维的酸性染料上染热力学和动力学参数。结果表明:经改性后PA6纤维90℃时染色亲和力由22.01 kJ/mol增至23.35 kJ/mol,染色热(绝对值)由5.99kJ/mol降至2.16 kJ/mol,染色熵由44.06 J/mol·K增至58.37 J/mol·K;90℃染料扩散系数由1.24×10-14m2/s增至1.53×10-14m2/s,染色活化能由14.89 kJ/mol降至10.05 kJ/mol。改性后酸性AGL染料更容易上染纤维,改性纤维的酸性染料上染性能得到改善。  相似文献   

3.
采用对比的方法,对稀土改性尼龙66纤维和普通尼龙66纤维的染色性能进行了研究。结果发现:稀土改性尼龙66纤维的上染率明显高于普通尼龙66纤维,对于各种染料上染率一般提高10%-20%,而且上染速度也快得多。这种改性纤维染色的皂洗牢度等于成稍高于普通尼龙66纤维,而日晒牢度基本上没有变化。另外染色织物的色调略有一些变化。其原因在于:这种稀土改性尼龙68纤维中,稀土离子的作用使染料与纤维之间的作用力增大,使染料更易于上染到纤维上,而且结合牢度增强。  相似文献   

4.
用阳离子改性剂GX-H23对脱胶后的菠萝叶纤维进行改性,用活性红K-2G在无盐的条件下染色。分析了改性剂浓度、氢氧化钠浓度、改性温度及时间对染料上染百分率的影响。得到的最佳改性工艺条件为:改性剂15 g/L;氢氧化钠20 g/L;改性温度60℃;时间40分钟。与未改性纤维在传统条件下染色相比较,改性后的菠萝叶纤维在无盐条件下染色上染百分率明显提高。  相似文献   

5.
水解条件对改性腈纶染色性能的影响   总被引:3,自引:0,他引:3  
俞成丙 《合成纤维工业》2006,29(3):13-14,17
探讨了水解温度、氢氧化钠浓度和水解时间对改性腈纶的染色性能的影响。纤维水解后结构发生了变化,用阳离子染料上染水解纤维时,染料的平衡上染量有较大的提高。提高水解温度、增加氢氧化钠浓度和延长水解时间,均能提高改性腈纶的染色性能。考虑到纤维的力学性能,较为适宜的水解条件为氢氧化钠质量分数12%~15%,水解温度低于90℃,水解时间为12~15 min。  相似文献   

6.
稀土改性聚丙烯纤维染色性能的研究   总被引:1,自引:0,他引:1  
采用稀土化合物苯甲酸镧与聚丙烯(PP)共混纺丝,对所得的共混改性PP纤维用分散染料和染色助剂染色,探讨了改性PP纤维的染色性能。结果表明,随着苯甲酸镧含量、染料助剂含量及染色时间的增加,改性PP纤维的上染率均增加。当苯甲酸镧质量分数为3%时,选用染色助剂氯化镧含量为0.8g/L的染液,染色时间为60 min时,改性PP纤维的上染率达75%。  相似文献   

7.
改性锦纶染色性能研究   总被引:3,自引:0,他引:3  
通过在锦纶合成过程中添加特殊的改性剂,制得末端氨基含量有大幅提高的改性锦纶。研究了染色条件对该改性锦纶染色性能的影响,指出在适宜的染色条件下(染浴pH值3.5~5.0、染色温度95℃、染色时间30min、染浴中染料浓度为0.625mg/mL),可获得上染量较大、色泽纯正的酸性染料可染锦纶。同时,还发现染料浓度与纤维上染料平衡浓度关系符合Langmuir吸附等温线。色差测试表明,改性锦纶的染色深度有很大提高,与未改性锦纶相比,色差明显,达到3~4级,表明改性锦纶染色效果良好。  相似文献   

8.
胺类改性剂对尼龙6热氧稳定性能的影响   总被引:1,自引:0,他引:1  
在己内酰胺水解聚合时加入一定量的受阻胺类改性剂,合成出含有改性剂的改性尼龙6树脂,研究了胺类改性剂对尼龙6的熔体稳定性、相对粘度、端氨基含量及机械性能在热氧作用下的改善效果。实验表明:随着胺类改性剂的加入,尼龙6熔体表观粘度随剪切速率的升高而下降的趋势变缓,熔体加工稳定性提高;与空白试样相比,改性尼龙6的端氨基含量都有不同程度的提高,高温作用下纤维的断裂强度及伸长率的变化幅度明显减小,热氧稳定性得到改善。添加0.1份改性剂后,尼龙6在热加工过程中相对粘度及端氨基含量的变化程度减小;树脂的初始热分解温度、最大热分解温度分别提高3.62℃和5.68℃。  相似文献   

9.
在己内酰胺水解聚合时加入一定量的可反应型复合胺类改性剂,合成出含有胺类改性剂的尼龙6树脂。研究了该改性剂对改善尼龙6树脂可纺性的作用。结果表明:在实验的添加量范围内,改性尼龙6树脂熔体黏度对切变速率的依赖敏感性下降,纺丝过程可以处于相对稳定的状态;与空白试样相比,当改性剂用量为0.1份时,尼龙6树脂中的低聚物含量明显减少,相对分子质量分布由1.7677降低到1.6093,表明在尼龙6熔体的纺丝成形过程中,胺类改性剂可以有效地改善其可纺性。  相似文献   

10.
用自制的阳离子改性剂对棉织物进行改性处理,用浓度为6%(o.w.f.)的活性红3BS、活性黄3RS、活性黑KN-B三种染料分别对改性后的棉织物进行无盐染色。分别讨论了上染速率曲线、移染性能对上染性能的影响。得到的最优固色工艺为:碳酸钠用量为10 g/L~15 g/L,在60℃下固色20分钟~30分钟。改性棉织物的匀染性良好,耐水洗色牢度和耐摩擦色牢度与常规染色基本一致。  相似文献   

11.
Polypropylene is utilized in manifold applications due to its unique properties. However, its use has been limited in the textile industry because conventional dyestuffs have no affinity for this polymer. Amine modifiers, generally improve the dye‐ability of polypropylene. Polyamide 6 (PA6) is a traditional amine modifier which improves the dyeing ability of polypropylene with disperse dyes. In this investigation, polyetheramine (PEA) is introduced as a novel amine modifier which improves the dye‐ability of polypropylene with disperse and acid dyestuffs. To this end, the dyeing behavior as well as possible impairments of tensile properties of PEA modified polypropylene were studied and compared to PA6 modified polypropylene. As with the PA6 containing blends, the tensile properties of the incompatible PP/PEA blends decreased due to weak interfacial adhesions between the components of the blends. However, the incorporation of a compatibilizer into such blends led to better dispersions of modifiers in the matrix as well as formation of amide or imide linkages which in turn reincreased the tensile properties almost to their initial values. Both PEA and PA6 modifiers improved the disperse dye uptake of the blends. However, Only Jeffamine ED‐2003 (i.e., PEA) was capable of enhance the acid dye uptake of modified polypropylene. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

12.
探讨自制的阳离子改性丝素蛋白助剂(简称丝改剂)改性工艺条件对大豆蛋白纤维活性染料染色性能的影响,评定改性纤维活性染料的染色效果。结果表明,改性的大豆蛋白纤维,在不加酸和盐的条件下染色时,对活性染料的染色性能显著改善;而当酸和盐用量达到一定值后,此效果被酸和盐明显的促染作用所取代。  相似文献   

13.
在少量水存在下,将聚氧乙烯二胺(PEO二胺)及N,N-二(3-氨丙基)甲胺(BAPA)与等摩尔的己二酸成盐后,再与己内酰胺共聚制得PA6-PEO二胺-BAPA嵌段共聚物,然后将共聚物与PET切片进行共混熔融纺丝、拉伸,得到PET/PA6-PEO二胺-BAPA共混改性纤维。研究发现,嵌段共聚物中低聚物含量少,改性纤维具有良好的可纺性、拉伸性及较高的强度保持值,共混纤维的抗静电性优良,还同时具有分散染料和酸性染料的可染性。对改性纤维进行季铵化处理后,可获得更加优越的抗静电效果。  相似文献   

14.
在少量水存在下,将聚氧乙烯二胺(PEO二胺)及N,N-二(3-氨丙基)甲胺(BAPA)与等摩尔的己二酸成盐后,再与己内酰胺共聚制得PA6-PEO二胺-BAPA嵌段共聚物,然后将共聚物与PET切片进行共混熔融纺丝、拉伸,得到PET/PA6-PEO二胺-BAPA共混改性纤维。研究发现,嵌段共聚物中低聚物含量少,改性纤维具有良好的可纺性、拉伸性及较高的强度保持值,共混纤维的抗静电性优良,还同时具有分散染料和酸性染料的可染性。对改性纤维进行季铵化处理后,可获得更加优越的抗静电效果。  相似文献   

15.
将TiO2表面包覆无定形TiO2,再经复配偶联剂改性后,分散在己内酰胺-水体系中乳化,于聚合釜中水解开环聚合,得到全消光聚酰胺6(PA6)切片。PA6切片经熔融纺丝制得PA6全消光纤维,并织成PA6全消光织物。用热重分析仪、纳米激光粒度仪、沉降试验等研究了改性TiO2的性能及在己内酰胺-水体系中的分散性;用差示扫描量热仪、扫描电子显微镜等研究了PA6全消光纤维结晶性能和截面形貌。结果表明:经复配偶联剂改性的TiO2在树脂基体中有很好的分散性;PA6全消光纤维的可纺性好;加入改性的TiO2后,PA6纤维的强度提高了25 %,但对PA6纤维的熔融温度没有影响;改性PA6全消光织物的上染率提高了10 %。  相似文献   

16.
苗蔚荣  张英菊 《化工学报》1992,43(1):117-122
<正>近几年来,稀土化合物在纤维染色过程中的应用取得了良好效果.随着稀土染色的推广和应用,对稀土染色机理的研究也愈加引起人们的关注.有人在研究锦纶和涤纶稀土染色时提出了分子络合理论,认为在染色过程中,稀土化合物的加入会生成纤维大分子-稀土离子-染料分子复杂的配位体,从而改善了染色效果.  相似文献   

17.
The dyeability of polypropylene fibres modified by two nitrogen polymeric additives containing dye sites of different basicity and accessibility was investigated using an acid dye. The thermodynamic and kinetic parameters of dyeing under infinite bath conditions were determined for four aqueous dye solutions. It is postulated that ionized molecules of acid dyes diffuse within the fiber after activation of a dye site by a suitable agent. In addition, color yield and color fastness of various dyes have also been studied. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 543–550, 1997  相似文献   

18.
己内酰胺质量对锦纶DTY染色性能影响的探讨   总被引:2,自引:0,他引:2  
梁艺怡 《合成纤维》2009,38(8):28-30
通过对原料质量、聚合反应过程的分析,提出聚酰胺聚合生产中液体和固体己内酰胺原料互换使用时出现切片黏度、后加工染色变化等问题的解决方案。将聚合釜上部TI131温度升高,减少醋酸加入量,解决了切片后加工染色性能改变的问题。  相似文献   

19.
This article reports the results of a study of nylon 6 fiber dyed in a low‐temperature hydrogen peroxide–glyoxal redox system. It was expected that the dyed fiber would have better dye fastness and higher economic value than would conventional fiber. In addition, this article presents the proposed mechanism for and model of a free‐radical dyeing system as well as a derived theoretical equation. From the experimental results, it was found that formation of covalent bonds by the coupling of the dye and the fiber radical in free‐radical dyeing was only 25%–40%, whereas with the conventional type of ionic dyeing, it was almost 60%–75%. Because the initiation efficiency of free‐radical formation is affected by many factors, such as the pH of the dye bath and the concentrations of the oxidant and reductant, the aims of this study were to investigate the formation of free radicals and the effects on dye uptake of the concentrations of dye, oxidant, and reductant and of the fiber amine end group. In addition, the dyeing properties of dyed fiber were investigated, and the dyeing order and rate constant of the rate equation were evaluated from the experimental data. From the experimental results, the following conclusions were drawn. (1) The hydrogen peroxide–glyoxal redox system produced many free radicals in the dye bath as temperature reached 70°C. (2) The amine end group in the nylon fiber was the main site of ionic and covalent bonding between nylon 6 fiber and dye. (3) The proposed model of free‐radical dyeing showed, from the fit of the experimental data into the equation and the evaluation of the equation parameters, that the order fit the theoretical value well, with the rate constant dependent on the dyeing conditions; at pH = 3, it could match the equation's best (rate equation of the proposed model: d[D]R/dt = kA[GO]1[H2O]m[D]1/2[F]1/2). (4) The optimum dyeing conditions in the hydrogen peroxide–glyoxal redox system were: [H2O2] = 0.15–0.20M, [glyoxal] = 0.07–0.10M, pH = 3, dyeing temperature = 70°C, and dyeing time = 45–50 min. (5) The redox dyeing system had better dye fastness than did the conventional system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4197–4207, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号