首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
在变形温度300~450℃,应变速率0.005~1 s-1条件下,采用Gleeble-1500D试验机对AZ41M镁合金进行热压缩实验;处理实验数据,求解不同变形条件下的动态回复软化率系数r,分析了温度和应变速率等工艺参数对r的影响;基于实验数据,建立了Laasraoui-Jonas(L-J)位错密度模型,借助Deform-3D软件对合金热压缩时的组织演变过程进行模拟,并将模拟结果与实验微观组织进行对比。结果表明,动态回复软化率系数r随温度升高而增大,随应变速率增加而降低;组织模拟结果与实验结果基本吻合,该位错密度模型能准确模拟合金动态再结晶过程中的微观组织演变。  相似文献   

2.
通过热压缩模拟试验,研究了AZ40M镁合金在塑性成形过程中,流动应力随应变速率、变形温度及应变的变化。基于试验的真应力-真应变数据,建立了Fields-Backofen模型,通过优化改进,提出了一种新的模型,并绘制了AZ40M镁合金的加工图。结果表明,在峰值应力前AZ40M镁合金的Fields-Backofen模型预测曲线与试验数据比较符合;改进后的新模型,具有较高的精度,相关系数达到了0.9918,平均相对误差为3.84%,在整个变形阶段的预测曲线与试验数据更加一致。通过加工图分析表明,在变形温度为620~673K,应变速率为0.005~0.05s^-1时适宜该合金的热加工。  相似文献   

3.
采用热模拟实验方法测试了AZ80镁合金材料的真实应力-应变曲线, 变形温度范围533K - 683K, 应变速率范围0.001 - 10 s-1, 变形程度为50%。动态再结晶的晶粒尺寸随着变形温度的升高和应变速率的降低而增大。确定了AZ80镁合金的热激活能, 确定了AZ80镁合金材料热变形时的本构方程。根据Sellars方程, 确定了AZ80镁合金的动力学模型, 其定义为描述发生动态再结晶体积分数与变形温度和应变速率的函数关系。确定了AZ80镁合金的运动学模型, 其定义为描述动态再结晶晶粒尺寸与Z函数之间数学关系. 动态再结晶晶粒尺寸的模型计算结果与实验结果相吻合,相对误差小于11.8%。确定了临界应变和稳态应变与Z函数之间数学关系。  相似文献   

4.
利用Gleeble-1500型热模拟机,在应变速率为0.01~1s-1、变形温度为593~653K的变形条件下,对AZ80A镁合金进行等温压缩试验.结果表明:在较高变形温度或者较低应变速率时,AZ80A镁合金更易发生动态再结晶;根据热模拟试验所得的流动应力曲线确定了AZ80A镁合金的动态再结晶临界条件,并通过动力学分析并建立了该合金的动态再结晶模型,可为该合金组织模拟技术提供理论依据.  相似文献   

5.
通过Gleeble-3500热变形模拟机对半连续铸态镁合金AZ31进行热压缩,变形温度为300~450℃,应变速率为0.01~1.00 s-1,得出应力-应变曲线后进行线性回归处理,建立了动态再结晶动力学模型,而后通过对热压缩中的动态再结晶过程进行有限元分析,将模拟的再结晶结果与实验结果进行比较验证。结果表明,随着变形温度的升高或者应变速率的降低,动态再结晶分数增加。同时,变形温度越低,应变速率越高,再结晶晶粒尺寸越细小。预测的晶粒尺寸、分布与试验结果一致。  相似文献   

6.
AZ31B镁合金再结晶过程的动力学   总被引:3,自引:0,他引:3  
对AZ31B镁合金热轧板材退火处理的静态再结晶进行了动力学分析。结果表明:AZ31B镁合金再结晶晶粒分数与退火时间的关系可以用JMAK方程进行描述,由实验数据计算得到AZ31B镁合金再结晶激活能为59.6~69.3 kJ/mol,在200,250,300,350℃和400℃时再结晶完成的时间分别为373~389,72.1~87.2,18.0~26.3,5.6~9.6 min和2.1~4.1 min,计算同时得到AZ31B镁合金再结晶动力学曲线,该曲线可以为制定AZ31B镁合金退火处理工艺提供参考。  相似文献   

7.
通过Gleeble 3500热压缩试验机对AZ31镁合金进行热压缩实验,得到温度为300、350、400、450和500℃,应变速率为0.03、0.3、和3 s 1的流变应力曲线。对流变应力曲线进行图形变换求解出不同应变速率下的回复参数r,求得的回复参数的自然对数lnr与温度的倒数1/T成线性相关。结果表明:可以采用修正的Laasraoui-Jonas(L-J)位错密度模型计算AZ31镁合金动态再结晶过程中的位错密度演变;修正的L-J位错密度模型结合元胞自动机(CA)能精确地模拟位错密度动态再结晶过程。  相似文献   

8.
采用连续挤压方法可以实现AZ31镁合金变形,变形条件是决定AZ31镁合金连续挤压成形的关键因素.利用DEFORM3D软件,模拟AZ31镁合金在250型连续挤压机上生产Φ7mm杆的成形过程,建立AZ31镁合金线连续挤压的刚粘塑性有限元模型,分析了连续挤压成形过程不同阶段的温度,等效应力应变变化.研究表明,变形金属的等效应力最高值出现在压实轮下方;温度最高值出现在型腔内;等效应变最大值出现在模具入口处.模拟结果对生产中制定合适的工艺和工模具的设计起到指导作用.  相似文献   

9.
《塑性工程学报》2016,(1):104-111
采用Gleeble-1500对AZ80镁合金进行热压缩实验,研究其在变形温度为573K~723K、应变速率为0.001s~(-1)~1s~(-1)条件下的高温变形特性及动态再结晶行为。根据真实应力-应变曲线,建立了考虑应变影响的双曲正弦本构模型,模型计算的应力值与实验值相对误差为2.52%。利用未再结晶区的真实应力-应变曲线,建立了AZ80镁合金的动态再结晶动力学模型。  相似文献   

10.
建立一个相场模型,并对AZ31镁合金进行再结晶晶粒长大模拟,提出一系列法则以确定模型中参数的真实值,从而实现组织演化在工业应用范围内-的真实时空模拟.在300~400 ℃ 100 min内时,模拟结果与实验结果吻合得很好,在250 ℃时,模拟结果与实验结果有较大偏离,说明该合金体系的界面迁移激活能在低温时有所改变,定量模拟研究该合金组织的混晶程度.结果表明:合金在300~400 ℃时,随时效时间的延长,混晶特别严重.模型模拟相场法界面控制过程组织演变的真实时空,所确定的参数值也可以用于其他相似合金系统的模拟.  相似文献   

11.
AZ31镁合金管材挤压成形数值模拟研究   总被引:2,自引:1,他引:2  
根据等温压缩实验所得AZ31镁合金应力一应变数据,拟合出材料温成形应力一应变曲线,应用有限元法模拟AZ31镁合金管材的挤压成形,着重探讨了AZ31镁合金挤压成形过程中,温度、速度、润滑等因素对金属流动的影响,为管类零件挤压成形工艺提供了科学依据。  相似文献   

12.
AZ31镁合金管材挤压过程的数值模拟   总被引:1,自引:2,他引:1  
采用Gleeble1500热模拟机对于不同温度和变形速率下的AZ31镁合金的变形性能进行了研究。通过实验得到真实应力的关系式及真实应变关系式,进而得到真实应力-应变曲线。以此为基础,采用DEFORM-3D软件,对不同壁厚管材的成形的过程进行模拟,发现在挤压时,管材内壁的金属比外壁的金属流动快,挤压筒与圆锥面过渡处的等效应变值最大等现象,分析了产生的原因,并通过工艺试验验证了模拟分析的正确性。  相似文献   

13.
在200~300℃,应变速率10-3s-1时对挤压态AZ31镁合金进行拉伸试验,研究了温度及断面收缩率对镁合金动态再结晶的影响.结果表明:初始动态再结晶的临界应变约为峰值应变的0.8~0.87;随着温度升高或断面收缩率增加,动态再结晶分数增加,并建立了动态再结晶分数与断面收缩率之间的数学模型;动态再结晶晶粒尺寸随温度升高而增大,且再结晶晶粒直径与Z因子之间符合特定的指数关系.  相似文献   

14.
相场方法模拟AZ31镁合金的静态再结晶过程   总被引:1,自引:0,他引:1  
为了获得合金静态再结晶前的变形晶粒组织,应用网格畸变模型与相场模型结合,生成变形合金再结晶前的初始晶粒组织;针对合金不同变形区域的特征和体系储存能分布不均匀的特点,分别引入反映不同变形区域的储存能分布的权重因子和变形区域的特征状态因子,构造多状态的非均匀自由能密度函数.在此基础上,应用相场动力学方程模拟了AZ31镁合金的静态再结晶过程的微结构演化,系统地分析了再结晶转变动力学曲线和Avrami曲线,以及储存能释放规律和再结晶晶粒尺度分布.模拟得到的动力学规律符合JMAK理论,所得的Avrami曲线可近似看成一条直线,对应于真应变ε=0.25,0.50,0.75和1.00,该直线的平均斜率分别为2.45,2.35,2.19和2.15.Avrami时间指数随变形量的增加而降低.变形程度大的合金,储存能释放的速度快,完成静态再结晶所需的时间短.基于本文提出的模型,结合相场方法计算模拟所得的结果与已有的理论结果和实验结果符合良好.  相似文献   

15.
采用热模拟实验方法获得了AZ31镁合金热变形真实应力-真实应变曲线,分析了变形工艺参数对AZ31镁合金热变形动态再结晶晶粒尺寸的影响规律。随着塑性变形应变速率的增大,动态再结晶晶粒尺寸减小。随着塑性变形温度的升高,晶粒尺寸增大。基于Yada模型,建立了AZ31镁合金热变形动态再结晶晶粒尺寸与变形工艺参数关系模型,以及动态再结晶临界应变与变形温度关系模型。晶粒尺寸预测模型计算值与实验值相吻合,最大相对误差为8.5%。临界应变模型计算值与实验值相吻合,最大相对误差为8.1%。建立的动态再结晶晶粒尺寸预测模型和临界应变预测模型的适用条件为变形温度250~400℃,应变速率0.01~1.0 s-1。  相似文献   

16.
为研究镁合金在卧式离心铸造条件下的流动性,以AZ31B镁合金为对象,采用有限元数值模拟,探究了不同初始条件下离心铸造的温度场和压力场的分布,分析了从浇注到凝固过程中的流动和温度变化情况。结果表明,受流动、旋转和回流等影响,温度场存在小范围波动,总体趋势是浇注后温度短时间内上升,然后逐渐下降直至凝固。分析了铸型内壁压力场分布,发现随着浇注过程进行,内表面压力由负压逐渐增大至平稳值,且随温度变化不大,随离心转速的增大而增大。  相似文献   

17.
采用Gleeble-1500热模拟试验机得到AZ80镁合金的流动应力-应变曲线,根据应力-应变曲线求得材料热变形的材料常数,基于刚塑性有限元法,对AZ80镁合金的反挤压过程进行数值模拟。分析挤压过程中的载荷-行程曲线以及坯料内部的等效应力、等效应变分布,并就挤压温度和挤压速度对反挤压过程的影响进行分析。根据模拟结果对筒形件进行反挤压试验,分析成形件的显微组织及力学性能。模拟结果表明,镁合金深孔筒形件的最佳反挤压温度为360℃,反挤压速度为5 mm·s-1。采用此工艺制备的筒形件表面质量良好,组织得到明显细化,且其抗拉强度、屈服强度与伸长率分别为324 MPa,216 MPa和11%。  相似文献   

18.
采用DEFORM-2D对AZ31镁合金的挤压变形过程进行了数值模拟。通过设计实验验证了所选材料应力-应变、摩擦系数和换热系数等参数的可靠性。在此基础之上,对一系列不同挤压过程进行了模拟计算分析,得到了坯料温度场分布、应力场分布及挤压载荷等一系列数据,并采用Matlab软件对不同工艺参数与形变载荷之间的关系进行了四维描述。  相似文献   

19.
采用基于AZ31镁合金的本构方程与ALE算法的HyperXtrude软件,针对某一AZ31镁合金薄壁空心型材的挤压过程进行数值模拟,根据初始模具设计的不足,提出优化模具工作带长度和增设阻流坎两种优化设计方案。结果表明,优化方案有效地解决了初始模具设计中速度分布不均的问题;采用优化方案生产的型材截面上的温度分布和应力分布更加均匀;对于复杂薄壁空心型材,增设阻流坎比优化工作带长度更加适用。  相似文献   

20.
利用Nakazima半球凸模胀形实验构建了AZ31镁合金在170、200和230℃温度条件下的成形极限图,分析了温度对AZ31镁合金成形极限的影响。利用有限元方法对AZ31镁合金在200℃温度下的胀形过程进行了数值模拟,并将所得模拟结果与实验结果进行对比。结果表明,随着胀形温度的升高,AZ31镁合金的变形抗力不断降低,显著提高了其成形极限,并验证了AZ31镁合金的塑性从100℃快速上升,到200℃后上升变缓。数值模拟和实验研究的结果具有较好的一致性,证实了所构建模型的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号