首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
纳米ZrO2负载Pd-Ni催化剂催化氯苯加氢脱氯性能研究   总被引:1,自引:0,他引:1  
采用负载法制备了一系列纳米ZrO2负载金属Ni、Pd催化剂,通过XRD、TEM和SEM等技术对催化剂进行了表征,并以氯苯的加氢脱氯为探针反应,考察了催化剂的加氢脱氯性能和反应温度、碱的用量、催化剂镍的含量等因素对催化活性的影响。结果发现,在80 ℃、NaOH和氯苯物质的量的比为1的反应条件下,Ni质量分数为10%和Pd为0.05%的Pd-Ni/ZrO2催化剂效果最佳,反应9 h后氯苯的转化率可达到100%。  相似文献   

2.
Supported Ni/-Al2O3 catalysts were studied in the gas phase hydrodechlorination of substituted chlorobenzenes. The catalytic properties of the catalysts were shown to be determined by the metal nickel. A correlation between the rate of the gas phase hydrodechlorination of substituted chlorobenzene and donor-acceptor properties of substituents was established. The electron-donor substituents increase and the electron-acceptor ones decrease their reactivity. The correlation analysis of data treated via the Hammett equation shows that hydrodechlorination on Ni/-Al2O3 catalysts is a reaction of electrophilic type.  相似文献   

3.
Sakae Takenaka 《Fuel》2004,83(1):47-57
Methane decomposition into H2 and carbon nanofibers at 823 K and subsequent gasification of the carbon nanofibers with CO2 into CO at 923 K were performed over supported Ni catalysts (Ni/SiO2, Ni/TiO2 and Ni/Al2O3). Supported Ni catalysts were deactivated for CH4 decomposition with time on stream due to deposition of a large amount of carbon nanofibers. Subsequent contact of CO2 with carbon nanofibers on the deactivated catalysts resulted in the formation of CO with a conversion of the carbons higher than 95%. In addition, gasification with CO2 regenerated the activity of supported Ni catalysts for CH4 decomposition, indicating that H2 formation through CH4 decomposition and CO formation through gasification with CO2 could be carried out repeatedly. Conversions of carbon nanofibers into CO were kept higher than 95% in the repeated gasification over all the catalysts, while change in the catalytic activity for CH4 decomposition with the repeated cycles depended on the kind of catalytic supports. Catalytic activity of Ni/SiO2 for CH4 decomposition was high at early cycles, however, the activity decreased gradually with the repeated cycles. On the other hand, Ni/TiO2 and Ni/Al2O3 showed high activity for CH4 decomposition and the activity was kept high during the repeated cycles. These changes of catalytic activities for CH4 decomposition could be explained by changes in particle sizes of Ni metal, i.e. Ni metal particles in Ni/SiO2 aggregated into ones larger than 150 nm with the repeated cycles, while the particle sizes of Ni metal in Ni/TiO2 and Ni/Al2O3 remained at an effective range for CH4 decomposition (60-100 nm).  相似文献   

4.
The reaction of combination of CO2 reforming and partial oxidation of methane to produce syngas (CRPOM) was tested over Ni/SiO2 catalysts which were prepared via incipient-wetness impregnation using precursors of nickel citrate and nickel nitrate. The catalysts were characterized by X-ray powder diffraction analysis (XRD) and H2-temperature-programmed reduction (H2-TPR) techniques. It was shown that the nickel citrate precursor strengthened interaction between NiO and support to form nickel silicate like species which could be reduced to produce small crystallites of metallic nickel at high temperatures. The Ni/SiO2 prepared with the nickel citrate precursor exhibited good catalytic performances for its highly dispersed metallic nickel derived from the nickel silicate species.  相似文献   

5.
6.
By performing the CH4 + CO2 and CD4 + CO2 reactions alternately over SiO2-supported nickel catalysts in a pulse micro-reactor, normal deuterium isotope effects on both the methane conversion reaction and on the CO formation reaction have been observed in the process of CO2 reforming of methane. Based on the observed CH4/CD4 isotope effects, the pathways for the formation of CO are discussed.  相似文献   

7.
Al2O3 was modified with TiO2 and ZrO2 using organometallic precursors and is used in the preparation of supported platinum catalysts. The catalysts have been characterised by nitrogen adsorption, hydrogen chemisorption and X-ray diffraction and were tested for their activity in the hydrodechlorination of chlorobenzene. The investigations show that support modification controls the catalyst deactivation remarkably and the catalysts were found to be highly active and selective. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
A NiCoP/SiO2 catalyst was fabricated by solid phase reaction of nickel chloride (NiCl2) and cobalt chloride (CoCl2) with potassium dihydrogen phosphate (KH2PO3). The structure and properties of NiCoP/SiO2 were characterized by X-ray powder diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermal gravimetric analysis and Brunauer–Emmett–Teller in detail. A mechanism was postulated based on the results of thermal gravimetric analysis. The as-prepared NiCoP/SiO2 catalyst had excellent hydrodesulfurization activity, as indicated by using dibenzothiophene as the reactant. Hydrodesulfurization occurred sequentially following hydrogenation of dibenzothiophene and desulfurization in the presence of NiCoP/SiO2.  相似文献   

9.
The liquid-phase hydrogenation of m-dinitrobenzene to m-phenylenediamine was studied over silica-supported nickel catalyst. The effects of Ni loading, calcination temperature, and reduction temperature on the physicochemical characteristics and activity of the catalyst were investigated by XRD, TEM, TPR, and activity tests. The results show that the silica-supported nickel catalysts exhibited high catalytic property, which depended on the particle size of Ni and the reduction degree of NiO. The optimal Ni loading, calcination temperature and reduction temperature of the catalyst for m-dinitrobenzene hydrogenation were found to be 20 wt%, 773 K in air and 723 K, respectively. Under this condition, 97.2% conversion of m-dinitrobenzene and 88.9% yield of m-phenylenediamine were obtained at 373 K and 2.6 MPa hydrogen pressure. The particle size of nickel species increased with the increase in Ni loading or calcination temperature. In addition, it was found that the catalyst could not be completely reduced at low reduction temperature, whereas high reduction temperature led to the sintering of Ni.  相似文献   

10.
Here, we revealed the effect of particle size of the nanoscale SiO2 on catalytic and characteristic properties of LLDPE/nano-SiO2 composites synthesized via the in situ polymerization with a zirconocene/MAO catalyst. In the experiment, SiO2 (10 and 15 nm) was first impregnated with MAO. Then, copolymerization of ethylene/1-hexene was performed in the presence of nano-SiO2/MAO to produce LLDPE/nano-SiO2 composites. It was found that the larger particle exhibited higher polymerization activity due to fewer interactions between SiO2 and MAO. The larger particle also rendered higher insertion of 1-hexene leading to decreased melting temperature (Tm). There was no significant change in the LLDPE molecular structure by means of 13C NMR.  相似文献   

11.
Hexavalent chromium (Cr(VI)) adsorption from aqueous solutions on magnetically modified multi-wall carbon nanotubes (M-MWCNT) and activated carbon (M-AC) was investigated. M-MWCNT and M-AC were prepared by co-precipitation method with Fe2+:Fe3+ salts as precursors. The magnetic adsorbents were characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The effects of amount of adsorbents, contact time, initial pH, temperature and the initial concentration of Cr(VI) solution were determined. The adsorption equilibrium, kinetics, thermodynamics and desorption of Cr(VI) were investigated. Equilibrium data fitted well with the Langmuir isotherm for both of the adsorbents. The theoretical adsorption capacities are 14.28 mg/g of M-MWCNT and 2.84 mg/g of M-AC. Cr(VI) adsorption kinetics was modeled with pseudo-second order model, intra-particle diffusion model and Bangham model. Thermodynamic parameters were calculated and ΔG°, ΔH° and ΔS° indicate that the adsorption of Cr(VI) onto M-MWCNT and M-AC was exothermic and spontaneous in nature. Results revealed that M-MWCNT is an easily separated effective adsorbent for Cr(VI) adsorption from aqueous solution.  相似文献   

12.
Fe/Al2O3 catalysts with different Fe loadings (10-90 mol%) were prepared by hydrothermal method. Ethanol decomposition was studied over these Fe/Al2O3 catalysts at temperatures between 500 and 800 °C to produce hydrogen and multi-walled carbon nanotubes (MWCNTs) at the same time. The results showed that the catalytic activity and stability of Fe/Al2O3 depended strongly on the Fe loading and reaction temperature. The Fe(30 mol%)/Al2O3 and Fe(40 mol%)/Al2O3 were both the effective catalyst for ethanol decomposition into hydrogen and MWCNTs at 600 °C. Several reaction pathways were proposed to explain ethanol decomposition to produce hydrogen and carbon (including nanotube) at the same time.  相似文献   

13.
ABSTRACT

Ti3AlC2/Al2O3 composite materials were successfully fabricated from TiO2/TiC/Ti/Al powders by the in situ reactive hot pressed technique. The microstructure, mechanical and oxidation properties of the composites were investigated in the paper. Vickers hardness increased with the Al2O3 content. The relative density of Ti3AlC2/Al2O3 composites exhibits a declining tendency with Al2O3 content especially exceeds 10 vol.?%. The Ti3AlC2/Al2O3 composites show excellent electrical conductivity. The flexural strength and fracture toughness of Ti3AlC2/10 vol. % Al2O3 are 461 ± 20?MPa and 6.2?±?0.2?MPa m1/2, respectively. The cyclic oxidation behaviour of resistance of Ti3AlC2/10 vol. % Al2O3 composites at 800–1000°C generally obeys a parabolic law. The oxide scale of sample consists of a mass of α-Al2O3 and TiO2, forming a dense and adhesive protect layer. The result indicates that the Al2O3 can greatly improve the oxidation resistance of Ti3AlC2.  相似文献   

14.
Li2FeSiO4/carbon/carbon nano-tubes (Li2FeSiO4/C/CNTs) and Li2FeSiO4/carbon (Li2FeSiO4/C) composites were synthesized by a traditional solid-state reaction method and characterized comparatively by X-ray diffraction, scanning electron microscopy, BET surface area measurement, galvanostatic charge-discharge and AC impedance spectroscopy, respectively. The results revealed that the Li2FeSiO4/C/CNT composite exhibited much better rate performance in comparison with the Li2FeSiO4/C composite. At 0.2 C, 5 C and 10 C, the former composite electrode delivered a discharge capacity of 142 mAh g−1, 95 mAh g−1, 80 mAh g−1, respectively, and after 100 cycles at 1 C, the discharge capacity remained 95.1% of its initial value.  相似文献   

15.
The flexure strength and the fracture toughness at 300 K and 77 K were measured in two isotropic polycrystalline graphites with very different microstructure and in one carbon/carbon composite. In addition, the micromechanisms of damage initiation at the notch tip were examined in situ during the fracture tests through a long focal distance microscope. It was found that the mechanical response of carbon-based materials was insensitive to the effect of cryogenic temperatures. In graphite with coarse microstructure, cracks appeared at very low stresses in various points of an ample region surrounding the notch tip, and damage progressed by their stable crack growth and link up. On the contrary, damage was localized at the notch root in graphite with a fine microstructure. High stresses were necessary to nucleate a single crack, which grew unstably, leading to immediate specimen failure. Damage in carbon/carbon composites was nucleated in the form of matrix cracks around the notch tip, but fiber yarns impeded the crack propagation until the load had increased significantly. This process was repeated several times, leading to a serrated load-deflection curve and to a marked increase in the overall fracture resistance.  相似文献   

16.
本研究以硝酸镍为镍源,酸/碱性硅溶胶为硅源,采用共沉淀法制备了Ni/SiO2催化剂。采用固定床反应器,评价Ni/SiO2催化剂对于2-甲基呋喃(2-MF)气相加氢合成2-甲基四氢呋喃(2-MTHF)的反应性能。通过XRD、N2等温吸附-脱附、H2-TPR、NH3-TPD、XPS、FT-IR和TEM等方法对催化剂结构进行表征,研究硅溶胶的酸碱性对Ni/SiO2催化剂结构及性能的影响。结果表明:以酸性硅溶胶为硅源制备的Ni/SiO2催化剂弱酸中心酸量多并且存在中强酸性中心,比表面积高,平均孔径大,因而该催化剂活性和2-MTHF的选择性高。Ni/SiO2催化剂稳定性良好,在90 ℃,2 MPa,WHSV=4.4 h?1条件下连续反应200 h,2-MTHF的收率均保持在95.7%。关键词:2-甲基四氢呋喃;2-甲基呋喃;共沉淀法;Ni/SiO2;酸碱性  相似文献   

17.
The ammonia method has been successfully used for preparing thermostable and well dispersed alumina‐supported catalysts with a surface average size of cobalt particle D s= 5.7 nm. The disproportionation reaction of CO over this Co/Al2O3 catalyst and a similar Co/SiO2 catalyst leads to the formation of carbon nanotubes demonstrating the same morphology. The amount of nanotubes over Co/Al2O3, however, is much larger than that obtained over Co/SiO2, because of a faster ageing in the latter solid. Similar support effects have already been reported for other catalytic reactions involving carbon oxides. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Mingqing Wang 《Polymer》2008,49(6):1587-1593
In this work, poly(phenylene vinylene) (PPV) and TiO2 nanocomposites containing different amounts of TiO2 were prepared through PPV precursor reaction in aqueous media. The TiO2 components were introduced into the systems by two methods, i.e. through in situ sol-gel reaction or by mixing commercially available TiO2 nanoparticles with the PPV precursor before reaction. The composite prepared by mixing commercially available TiO2 nanoparticles shows perfect crystal character of the anatase TiO2, but TiO2 particles severely agglomerate in the PPV matrix. The composite prepared by introducing TiO2 nanoparticles through the sol-gel reaction shows uniform nanoscale dispersion of anatase TiO2 in PPV matrix. The UV-vis and FL spectroscopic analyses confirm the formation of the TiO2/PPV composites and reveal the enhanced PL quenching effect as the TiO2 content increases. The PPV/TiO2 composites can show significant photovoltaic response. Better photovoltaic performance is observed for the solar cells prepared by using the in situ sol-gel reaction method.  相似文献   

19.
Undoped and Ni, Ce-doped nanocrystalline tin oxide were synthesized by co-precipitation route. Doped as well as undoped SnO2 compositions revealed single phase structure without any impurity. The lattice constant of SnO2 increases and the grain size decreases with doping of Ni and Ce. The responses of the sensing elements are evaluated by measuring the resistance change upon exposure to various test gases such as liquid petroleum gas (LPG), acetone, ethanol and ammonia. In comparison to LPG, ethanol, and ammonia the response towards acetone vapor increases markedly on simultaneous doping of Ni and Ce. For acetone vapors with 500 ppm at 300 °C, the undoped SnO2 shows 31% response, while with individual Ni or Ce doping it increases to 38 and 60%, respectively, however with simultaneous doping of Ni and Ce there is a significant enhancement up to 92%. The results of gas sensing measurements reveal that the thick films deposited on alumina substrates using screen printing technique give selectively a high response of (87%) with fast recovery (∼1 min) towards 100 ppm acetone at 300 °C.  相似文献   

20.
Several acidic and basic oxide promoted Cr/SiO2 catalysts were prepared and investigated in oxidative dehydrogenation of ethane in the presence of carbon dioxide. The effects of SO4 2–, WO3 and alkali metal oxides (Li2O, Na2O, and K2O) on the catalytic activity were studied. It is found that sulfation of silica produces a positive effect on ethane conversion and ethylene yield while tungstation and addition of strong basic promoters (alkali metal oxides) suppress the catalytic activity. Characterization indicates that the varying activity of the promoted catalysts can be attributed to the difference in acid/base property and redox potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号