首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了改善La-Mg-Ni-Co系贮氢电极合金的综合电化学性能,研究了退火处理对La0.7Mg0.3(Ni0.85Co0.15)3.4相结构和电化学性能的影响.在1 073 ~1 223 K下退火9 h制得样品,并进行了XRD分析以及恒电流充放电、线性极化和恒电位阶跃3种电化学测试.结果表明,铸态和退火态合金均由具有PuNi3结构的主相及少量杂相组成.退火态合金相的成分和结构均匀性得到明显改善,并具有较低的吸氢体积膨胀率.退火处理使合金的最大放电容量有所提高,循环稳定性得到明显改善.退火态合金放电容量的提高与合金中主相丰度的增大密切相关.合金循环稳定性的改善主要归结于退火态合金具有较低的吸氢体积膨胀率和较好的合金成分均匀性.  相似文献   

2.
为了提高La-Mg-Ni系(PuNi3型)贮氢合金的电化学循环稳定性,在La2Mg(Ni0.85Co0.15)9合金中加入微量Cr,用铸造及快淬工艺制备了La2Mg(Ni0.85Co0.15)9Crx(x=0,0.1,0.2,0.3,0.4)贮氢合金.研究了Cr含量对铸态及快淬态合金微观结构及电化学性能的影响.XRD,SEM及TEM的分析结果表明,铸态及快淬态合金具有多相结构,包括(La,Mg)Ni3相(PuNi3型结构)、LaNi5相和一定量的LaNi2相.随Cr含量的增加,铸态合金中LaNi2相的量增加.电化学测试结果表明,Cr的加入提高了铸态及快淬态合金的循环稳定性,但使合金的容量下降.当Cr添加量从0增加到0.4时,铸态合金的容量从396.3 mAh/g下降到355.6 mAh/g,循环寿命从72次增加到97次;快淬态(30 m/s)合金的容量从364.2 mAh/g下降到334.2 mAh/g,循环寿命从100次增加到131次.Cr添加使铸态合金的放电电压特性和活化性能得到改善.  相似文献   

3.
采用熔体快淬法制备出了不同快淬速度(铜轮转速)的Nd8.5Fe84Nb0.5Zr0.5B6Cu0.5稀土永磁合金条带,研究了制备工艺和晶化工艺对该合金磁性能的影响.研究结果表明:快淬速度对该合金的磁性能有很大的影响,合金在20 m/s快淬时磁性能最佳;晶化温度过高或者晶化时间过长,都会造成晶粒尺寸过大,其比表面积减小;晶化温度过低或者晶化时间过短,晶化不完全,造成软、硬磁性相析出较少和大量非晶相的存在,都阻碍软、硬磁性之间的交换耦合作用,影响合金磁性能的提高.经最佳晶化工艺处理后合金在20 m/s快淬时具有最佳磁性能,即剩余磁饱和强度Br=0.72 T、矫顽力Hc=380.98 k A/m和最大磁能积(BH)max=103.72 k J/m3.  相似文献   

4.
硼对稀土系AB5型贮氢合金电化学容量及循环寿命的影响   总被引:1,自引:0,他引:1  
为了提高低钴AB5型贮氢合金的电化学循环稳定性,在MmNi3.8Co0.4Mn0.6Al0.2贮氢合金中加微量的硼.用真空快淬工艺制备了稀土系低钴AB5型MmNi3.8Co0.4Mn0.6Al0.2Bx(x=0,0.1,0.2,0.3,0.4)贮氢合金,分析测试了铸态及快淬态合金的电化学性能及微观结构,研究了硼对铸态及快淬态合金电化学容量及循环寿命的影响.结果表明,硼使铸态及快淬态MmNi3.8Co0.4Mn0.6Al0.2贮氢合金的电化学容量不同程度地降低,但使电化学循环稳定性大幅度提高.硼对电化学性能的影响主要是促进非晶相的形成.  相似文献   

5.
利用熔体淬冷法制备出不同速度下的4种合金薄带,研究了快凝对贮氢合金电化学性能的影响.合金的晶体结构采用XRD和SEM进行表征.结果显示,铸态和快凝合金都是单一的CaCu5相结构,快凝后的合金组织变得更加细密,晶粒变小而且更加均匀.电化学实验结果表明,快凝显著提高了合金的稳定性,但是降低了合金的放电容量和高倍率性能,铸态...  相似文献   

6.
非化学计量比对贮氢合金Mm(NiCoMnAl)5Bx电化学性能的影响   总被引:2,自引:0,他引:2  
研究了稀土系非化学计量比贮氢合金Mm(NiCoMrLAl5)5Bx(x=0,0.1,0.2,0.3,0.4)微观结构及电化学性能,分析了非化学计量比x对贮氢合金电化学性能的影响.研究结果表明,铸态非化学计量比合金Mn(NiCoMnAl)5Bx具有双相组织,主相为CaCu5结构相,还有少量CeCO4B第二相,第二相的相丰度随x的增加而增大.经22m/s淬速快淬处理后,合金中的第二相消失.随非化学计量比x的增加,合金的电化学容量下降,但活化性能、倍率放电能力循环寿命明显提高,放电电压特性得到一定改善.  相似文献   

7.
为了改善La-Mg-Ni系A2B7电极合金的电化学循环稳定性,用Zr部分替代合金中的La,并采用熔体快淬技术制备了La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05,0.1,0.15,0.2)电极合金.用XRD,TEM分析了合金的微观结构,结果表明,快淬不含Zr合金具有完全的纳米晶结构,而快淬含Zr合金中出现明显的非晶相,证明Zr替代有利于提高合金的非晶形成能力.铸态及快淬态合金均具有多相结构,包括两个主相(La,Mg)2Ni7及LaNi5和残余相LaNi2,Zr替代及快淬导致LaNi5相增加和(La,Mg)2Ni7相减少.Zr替代及快淬处理显著提高了合金的电化学循环稳定性,但快淬明显降低Zr0.2合金的电化学贮氢动力学;随Zr替代量的增加,5 m/s快淬合金的电化学贮氢动力学先增加后降低.  相似文献   

8.
借助X-ray及吸放氢性能测试装置研究了非化学计量比快凝合金La(NiMn)5.6的结构和贮氢性能以及A端、B端元素替代对合金的影响,测试了不同温度下合金的PCT曲线.结果表明,快速凝固(35 m/s)条件下合金La(NiMn)5.6均可获得过饱和CaCu5型单相组织.A端以Ce取代La,使平台压力增大,最大吸氢量减小,但滞后降低;B端以Sn取代Ni,改善了合金的活化特性,并使平台降低,吸放氢滞后减小.  相似文献   

9.
在低钴AB5型贮氢合金LaxMm1-x(NiCoMnCuAl)5.1(x=0.25,0.38,0.56,0.74)中,加入纯La调整富Ce混合稀土中的La含量,测试了合金的电化学性能,研究了La含量的变化对LaxMm1-x(NiCoMnCuAl)5.1合金晶格参数、热力学参数及电化学性能的影响。结果表明,合金的晶格常数、晶胞体积及标准生成焓的绝对值随La含量的增加而增大,La含量的增加对提高铸态及快淬态合金的容量有利,但使得电化学循环稳定性及放电平台压下降,La含量的变化对合金的活化性能基本没有影响,铸态和快淬态合金通过1~2次循环均可完全活化。  相似文献   

10.
利用X线衍射仪、振动样品磁强计等测试手段研究了纳米复合Nd9Fe80Co4Nb1B6合金的相结构与磁性能,结果表明:淬速为20 m/s的合金,经710℃退火处理后,合金软硬磁性相的晶粒尺寸细小,两相之间具有较强的交换耦合作用,合金具有优良的综合磁性能,即剩磁为0.95 T,矫顽力达到540 kA/m,最大磁能积为112 kJ/m3.选择适当的快淬速度有利于改善退火后合金的相结构,提高合金的综合磁性能.  相似文献   

11.
系统研究了La(Ni,Sn)5+x(x=0~0.35) 无Co贮氢合金的化学计量比对其晶体结构及电化学性能的影响.X射线衍射分析仪(XRD)分析表明,上述合金均为单相CaCu5结构.但在过计量比(x>0)合金的结构中,有部分1a位置元素(La)的原子被沿c轴定向排列的Ni-Ni“哑铃”对所替代,且其替代La原子的分数随x的增大而增多,从而导致合金晶胞的c轴及c/a比值明显增大,晶胞体积有所减小,并显著降低了合金的吸氢体积膨胀率.电化学测试表明,增大x值可使合金的循环稳定性得到显著提高,但也使合金的最大放电容量和高倍率放电性能有所降低.研究发现,由于合金的化学计量比增大会使其结构中含有较多的Ni-Ni“哑铃”对,合金的抗吸氢粉化能力得到了明显的改善,从而使合金在充放电过程中的反应比表面积有所减小、腐蚀速率得到抑制、循环稳定性得到显著提高.但合金反应比表面积的减小也导致了电极反应的速率的减小,从而使其高倍率放电性能有所降低.  相似文献   

12.
采用熔体旋转(melt-spinning)技术制备的AB5型储氢合金,用扫描电镜观察合金的显微组织并对合金成分进行了EDX分析,用XRD研究合金结构和晶胞参数及吸氢体胀率,对比快淬态与铸态合金的使用性能.结果表明.快淬态合金性能优于铸态合金.  相似文献   

13.
用XRD,TEM及SEM测试了稀土基AB5型贮氢合金Mm(NiMnSiAlCu)4.3Co0.6-xFex(x=0~0.4) 的微观结构,并全面测试了合金在铸态及快淬态下的电化学性能.研究结果表明,铸态合金为双相结构,主相为CaCu5型相,还有少量Ce2Ni7相,经快淬处理后,第二相减少.对铸态合金,随Fe含量的增加,合金的容量有所降低,循环稳定性得到改善.对快淬态合金,当铁含量大于0.2时,合金的容量急剧下降,而循环稳定性大幅度增加.这主要是由于铁的加入使合金的微观结构发生了变化.  相似文献   

14.
用熔融快淬法制备FeCuNbSiB非晶软磁合金纤维,分别改变快淬炉铜轮的线速度,感应线圈的功率及炉体气氛等工艺参数。用扫描电镜(SEM)研究它们对合金纤维的表面质量的影响,同时测量了纤维起始磁导率随频率的变化。结果表明:制备的最佳工艺为铜轮转速50m/s,感应线圈功率为35kw,在真空氩气(0.05MPa)保护下,起始磁导率的实部随频率的增大而减小,虚部先减小后增大。  相似文献   

15.
为研究稀土元素Ce、Y对非晶储氢合金催化及其性能的影响,采用快淬法制备Mg70(A0.25Ni0.75)30(A=Ce,Y)合金,使用Sievert’s气体吸附技术和差示热扫描技术研究其储氢性能和热力学稳定性。XRD衍射分析显示,快淬制备的合金为非晶合金,但在573K、2MPa的氢压下,氢化后的Mg70(Y0.25Ni0.75)30会产生MgH2、Mg2NiH4和2相,Mg70(Ce0.25Ni0.75)30会产生Mg2NiH4、CeNi5和MgH2相。不同温度的动力学测试结果表明,快淬法制备的Mg70-(Ce0.25Ni0.75)30和Mg70(Y0.25Ni0.75)30合金分别获得的最大吸氢量为质量分数4.42%和3.09%,Mg70(Ce0.25Ni0.75)30和Mg70(Y0.25Ni0.75)30合金前100s吸氢量分别达到各自最大吸氢量的97%和87%。通过对DSC曲线的分析发现,Mg70(A0.25Ni0.75)30的脱氢活化能较低,分别为111.025±2.790kJ/mol(A=Ce)、84.843±2.057kJ/mol(A=Y)和152.207±6.764kJ/mol(A=Y)。实验结果表明,Y元素对Mg70(A0.25Ni0.75)30合金催化及储氢性能的改善要优于Ce元素。  相似文献   

16.
用铸造及快淬工艺制备了La-Mg-Ni系(PuNi3型)贮氢合金La2Mg(Ni0.85Co0.15)9Bx(x=0,0.05,0.1,0.15,0.2),分析测试了铸态及快淬态合金的微观结构与电化学容量,研究了硼及快淬工艺对合金微观结构及电化学容量的影响.结果表明,铸态合金具有多相结构,包括(La,Mg)Ni3相(PuNi3型)、LaNi5相,一定量的LaNi2相和微量的Ni2B相,经快淬处理后Ni2B相消失.硼的加入对铸态及快淬态合金的容量产生不同的影响,铸态合金的容量随硼含量的增加而单调下降,而快淬态合金的容量随硼含量的增加有一极大值.快淬处理对含硼及不含硼合金的容量也有不同的影响,随淬速的增加,不含硼合金的容量单调下降,而含硼合金的容量可以获得一个极大值.  相似文献   

17.
用电位阶跃法和恒电流充放电法研究了贮氢合金凝固组织中的氢扩散行为和合金氢化物(MH)电极放电的速度特性。研究表明:合金MLNi3.45(CoMnTi)1.55的各凝固组织中氢扩散系数及合金的电极性能均明显不同,随合金凝固时冷却速度增大,氢扩散系数和晶胞体积减小;合金电极的高倍率放电率主要取决于氢在合金中的扩散速度和电极表面的电催化活性。定向凝固组织具有良好的放电速度特性与其凝固组织中存在Ni的析出  相似文献   

18.
采用电化学方法测定了铸态合金和850-1000℃时二步法热处理合金(即热处理合金)的P-C-T曲线,研究了二步法热处理对M1(NiCoMnAl)5贮氢合金热力学性能的影响;应用三电极体系测定了贮氢合金电极的活化性能及温度特性。研究结果表明:合金经热处理后,平台压力下降,贮氢合金放氢平台的倾斜度减小;同时,X衍射的特征衍射峰明显加高,主峰半高宽由0.36下降到0.20;在常温(25℃)和0.2C(其中C为放电容量)充放电的条件下,合金电极达到最大电化学容量的循环次数由铸态合金电极的8次提高到热处理合金电极的3次;在不同的充电率下,合金电极在-20℃(1C)时放电效率由铸态合金电极的73.5%提高到热处理合金电极的94.8%,但热处理合金电极在45℃(1C)时放电效率则比铸态合金电极下降近3%,表明两段热处理能明显提高合金的活化速度,但合金电极的高温充放电容量下降。  相似文献   

19.
利用光学显微镜,电化学测试和腐蚀试验等方法系统地研究了微量元素Cr、Zr、Ti和Cu对Al-7.5Mg-0.5Mn合金热轧板材临界退火冷却速度(CRC)及组织性能的影响。结果表明:Cr和Zr能促进退火过程中β相的均匀析出,明显提高CRC和抗剥蚀性(EC),有利于高Mg合金加工工艺的改善;CU虽能促进β相的均匀分布,促进合金的均匀腐蚀,但对冷却速度不敏感;Ti的作用不明显,甚至对抗蚀性有消极影响。  相似文献   

20.
采用颗粒动力学为基础的Euler-Euler双流体模型研究反应器内液固相的流动力学特性.通过fluent软件,采用标准k-ε模型描述流体的湍流状态、Gidaspow曳力模型描述流体的相互作用力,运用SIMPLE算法求解速度场.结果表明:在5~9m/s的浆液速度范围内,环管反应器直管段的固相体积分数分布均匀,弯管段的固相体积分数分布不均匀;浆液速度增大,其固相体积分数分布的非均匀性增加;当固相体积分数为0.35时,浆液密度为563~571千克/立方米.通过对速度场的分析可知,上升管中段的流速为6~7.5m/s,速度呈对称分布;下降管中段的流速为5~8m/s,速度呈非对称分布.计算结果与工厂实际生产情况接近,表明欧拉双流体模型能有效地描述环管反应器内浆液流动形态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号