首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Constructing cerium and manganese bimetallic catalysts with excellent catalytic performance for soot combustion is the research frontier at present. In order to find out the key factors for catalytic soot combustion of Ce–Mn–O catalysts, a series of Ce–Mn–O catalysts with different Ce/Mn proportions were prepared by co-precipitation method. The activity test results show that it increases first and then decreases with the increase of Mn content. The best catalytic activity is obtained for Ce0.64Mn0.36 catalyst, which shows a maximum rate temperature (Tm) at 306 °C for CO2 production in TPO curve. Compared with non-catalytic soot combustion, the Tm decreases by more than 270 °C. Systematical characterization results suggest that when the adsorbed surface oxygen, lattice oxygen, specific surface area and total reduction amount of the catalysts reach a certain value, the key factors leading to the difference of catalytic activity become the readily reducible and highly dispersed surface manganese oxide species and contact performance of the external surface. The surface manganese oxide species is beneficial to improving the low-temperature reducibility of catalysts and the porous surface is conducive to the contact between catalyst and soot. Furthermore, for the soot combustion reaction containing only O2, the promoting effect of Mn4+ is not obvious.  相似文献   

2.
FeCe nanocomposite catalysts with different iron contents were synthesized by a facile co-precipitation method.The as-prepared materials were characterized by various techniques including powder X-ray diffraction(XRD),N_2 adsorption/desorption and high-resolution transmission electron microscopy(HRTEM).Catalyst with the highest iron content(90 FeCe) shows the best activity for the hydrogen generation via ammonia decomposition.83% NH_3 conversion is achieved at 550℃ and nearly full conversion of NH_3 is realized at 600℃ with a GHSV of 24000 cm~3/(g_(cat)·h).The large content and small size crystal particles of iron species are responsible for the good catalytic performance.Temperatureprogrammed reduction by hydrogen(H_2-TPR) was performed to investigate the interaction between cerium and iron species.It is found that slight cerium can exert strong interaction with iron compound thus effectively prevent the self-aggregation of active iron species,so as to improve the catalytic activity for ammonia decomposition.  相似文献   

3.
In this paper,MCM-41 was synthesized by a soft template technique and MCM-41 supported CuO-CeO_2 nano-sized catalysts with different Cu/Ce molar ratios were prepared by a deposition-precipitation method.N_2 adsorption,HRTEM-EDS,H_2-TPR,XPS characterization,as well as catalytic activity and durability tests for the catalytic combustion of chlorobenzene(CB) were conducted to explore the relationship between the structure and catalytic performance of the catalysts.It is revealed that cuCe(6:1)/MCM-41 has the highest activity and can completely catalyze the degradation of CB at 260℃.The reasons for the high activity of the catalysts are as follows:MCM-41,a type of mesoporous material which has large pore size and large specific surface area,is suitable as a catalyst carrier.The average diameter of nano-sized CuO and CeO_2 particles is about 3-5 nm and adding CeO_2 improves the dispersion of active component CuO,which are highly and evenly dispersed on the surface of MCM-41.Characterization results also explain why MCM-41 supported CuO-CeO_2 with appropriate proportion can highly enhance the catalytic activity.The reason is that CeO_2 acting as an oxygen-rich material can improve the mobility of oxygen species through continuous redox between Ce~(4+)and Ce~(3+),and improve the catalytic performance of CuO for CB combustion.Besides,CuCe(6:1)/MCM-41 also displays good durability for CB combustion,both in the humid condition and in the presence of benzene,making it a promising catalytic material for the elimination of chlorinated VOCs.  相似文献   

4.
A series of supported Mn-Ce mixed oxide catalysts were prepared by the impregnation method and used for the oxidation of methane. The catalysts were characterized by N2 adsorption (BET), X-ray diffraction (XRD), laser Raman spectrum (LRS), and temperature programmed reduction (TPR) techniques. The XRD and LRS results confirmed the high dispersion of active components or formation of solid solution between manganese and cerium oxides in the bulk and on the surface of mixed oxide catalysts. The reducibility was remarkably promoted by the stronger synergistic interaction between the two oxides from H2-TPR measurements. As expected, all the experimental mixed oxide catalysts showed excellent activity for methane combustion at low temperature. Especially, for the catalyst with Mn-Ce ratio 3:7, methane conversion reached 92% at a temperature as low as 470 ℃.  相似文献   

5.
Ceramic supported cerium, manganese and cerium-manganese catalysts were prepared by direct impregnation of aqueous precursor, and characterized by scanning electron microscopy(SEM), X-ray diffraction(XRD), Brunauer-Emmett-Teller method(BET), temperature programmed reduction(H_2-TPR), X-ray photoelectron spectroscopy(XPS) acidity measurements and electrical conductivity. The catalytic activity was evaluated for volatile organic compounds(VOC)(ethanol, methyl ethyl ketone and toluene) oxidation. Additionally, catalysts were tested in particulate matter(PM) combustion. The characterization results indicated that Ce was in the form of Ce~(4+) and Ce~(3+), and Mn existed in the form of Mn~(4+) and Mn~(3+) on the surface of the Mn/AC sample and in the form of Mn~(4+) in the Ce/Mn/AC monolith. VOC oxidation results revealed that the Ce/Mn/AC sample showed an excellent performance compared with ceramic supported CeO_2(Ce/AC) and MnO_x(Mn/AC) samples. The PM combustion was also higher on Ce/Mn/AC monoliths. The enhanced catalytic activity was mainly attributed to the Ce and Mn interaction which enhanced the acidity, conductivity and the reducibility of the oxides.  相似文献   

6.
This work described in situ combustion synthesis method for depositing CuO-CeO2 on the FeCrAl honeycomb supports.The in-fluence of the solution concentration and the role of the additive were studied and analyzed by scanning electron microscopy (SEM),X-ray diffractometer (XRD),and temperature programmed reduction (TPR) techniques.The results showed that 200 g/L of the active solution was the most appropriate concentration for preparing the monolithic catalysts,and the additives of praseodymium and lanthanum improved the adhesion stability of the monolithic catalysts.The addition of Pr did not greatly affect the catalytic performance,but CO could not be totally converted into CO2 after the addition of La into the CuO-CeO2/Al2O3/FeCrAl catalysts.  相似文献   

7.
The present work was devoted to study the catalytic activity of lanthanum and cerium oxides separately,deposited on g-alumina in the reaction of decomposition of nitric oxide. The catalyst samples were prepared by the method of impregnation of g-Al_2 O_3 using solutions, containing nitrates of lanthanum and cerium. The prepared samples were calcined for 4 h at temperature 650℃ in an oven in air atmosphere. The catalysts were characterized by: chemical analysis by inductively coupled plasma atomic emission spectrometry(ICP-AES), X-ray diffraction(XRD), X-ray photoelectron spectroscopy(XPS),scanning electron microscopy(SEM) combined with energy-dispersive X-ray spectroscopy(EDS), electron paramagnetic resonance(EPR) and infrared(IR) spectroscopy, as well as measurement of the specific surface area. The results show that the catalysts based on lanthanum oxide and cerium oxide deposited on alumina display high catalytic activity over 60% conversion degree with respect to decomposition of nitric oxide in the absence of reducing agent. In the presence of reducer the activity reaches 90% conversion degree.  相似文献   

8.
The La-hexaaluminate catalysts with high performance ration method with the buffer solution of NH4HCO3 and NH4OH were synthesized by the modified controllable co-precipimixture as the precipitation agent. The physicochemical properties of catalysts were characterized by the means of BET, XRD, and TPR techniques. With methane catalytic combustion as the probe reaction, the catalytic performances were also tested on a fixed bed, continual flow system. The resuits show that it is a good method to obtain chemical homogeneous hexaaluminate materials by the buffer solution as the precipitation agent. The La-hexaaluminate can be formed at low temperatures ranging from 1050 to 1200 ℃. The cerium introduction plays a great role in the methane catalytic combustion on La-Mn hexaaluminate because of its high oxygen storage capacity property and the well synergic effect between Ce and Mn. However, the CeO2 appears in hexaaluminate through the XRD pattern, which reveals that Ce can not enter the crystal lattice position. Mn introduction improves the methane catalytic activity to a large extent due to its high redox property. When Mn atomic substitution amount for A1 is 2, the hexaaluminate shows the highest activity, and the catalyst possesses good H2 consumption and redox performance. Mn can easily occupy the hexaaluminate crystal position, which reveals that the Mn substitute La-hexaaluminate is a promising high temperature methane combustion catalyst with high activity and good stability.  相似文献   

9.
The effect of manganese and/or ceria loading of V_2 O_5-Mo_O_3/TiO_2 catalysts was investigated for selective catalytic reduction(SCR) of NO_x by NH_3.The manganese and/or ceria loaded V_2 O_5-MoO_3/TiO_2 catalysts we re prepared by the wetness impregnation method.The physicochemical characteristics of the catalysts were thoroughly characterized.The catalytic performance of 1.5 wt% V_2 O_5-3 wt% MoO_3/TiO_2(V1.5 Mo3/Ti) is greatly enhanced by addition of 2.5 wt% MnO_x and 3.0 wt% CeO_2(V1.5 Mo3 Mn2.5 Ce3/Ti) below450℃.Compared with the V1.5 Mo3/Ti catalyst with NO_x conversion of 75% at 275 ℃,V1.5 Mo3 Mn2.5 Ce3/Ti exhibits higher NO_x conversion of 84% with good resistance to SO_2 and H_2 O at a gas hourly space velocity value of 150000 h~(-1).The active manganese,cerium,molybdenum,and vanadium oxide species are highly dispersed on the catalyst surface and some synergistic effects exist among these species.Addition of MnO_x significantly enhances the redox ability of the cerium,vanadium,and molybdenum species.Addition of Ce increases the acidity of the catalyst.More active oxygen species,including surface chemisorbed oxygen,form with addition of Mn and/or Ce.Because of the synergistic effects,appropriate proportions of manganese in different valence states exist in the catalysts.In summary,the good redox ability and the strong acidity contribute to the high NH3-SCR activity and N2 selectivity of the V1.5 Mo3 Mn2.5 Ce3/Ti catalyst in a wide temperature range.And the V1.5 Mo3 Mn2.5 Ce3/Ti catalyst shows good resistance to H_2 O and SO2 in long-time catalytic testing,which can be ascribed to the highly sulfated species adsorbed on the catalyst.  相似文献   

10.
Cerium-promoted silica supported copper chromite catalyst was synthesized from acid hydrolysis of sodium silicate by sol-gel method.The catalyst was characterized by Brunauer-Emmett-Teller(BET)method,field-emission scanning electron microscopy(FESEM),X-ray diffraction(XRD),H2-temperature programmed reduction(H2-TPR),NH3-temperature programmed desorption(NH3-TPD)and pyridine adsorbed Fourier transform infrared spectroscopy(Py-FTIR).Among cerium doped catalysts,5 wt%of Ce promoted copper chromite supported by 40 wt%of silica(SiCuCr40-Ce5)shows the largest BET surface area.XRD analysis of the reduced form of the catalyst shows both CeO2/Ce2O3 redox system and CuO/Cu2O/Cu redox system.Py-FTIR shows the maximum number of Lewis acid sites for SiCuCr40-Ce5 than others.The highest acetol selectivity with analytical reagent(AR)grade glycerol conversion is observed for SiCuCr40-Ce5 at 200℃for 3 h in a batch reactor at atmospheric pressure.Cerium promotion lowers the reaction te mperature with enhanced glycerol conve rsion and increased acetol selectivity.Though the above catalyst shows higher conversion for laboratory reagent(LR)grade glycerol but it reduces acetol selectivity.The addition of glucose into the LR grade glycerol further reduces glycerol conversion and decreases the acetol selectivity to zero.This may be due to the presence of iron as impurity in LR grade glycerol.XRD analysis of spent catalyst shows the absence of redox catalytic system and the pore volume reduces identified by BET analysis.Raman analysis of the spent catalyst shows graphite-like carbon deposition in the spent catalvst.  相似文献   

11.
A family of Ce-doped LaCoO3 perovskites are presented as possible catalysts for Cl–VOCs elimination. These materials with different contents of Ce were obtained through the citrate and the reactive grinding methods. The insertion of Ce in the original perovskite structure favours the presence of Co2+/Co3+ and Ce3+/Ce4+ redox pairs and a higher content of oxygen vacancies that enhances the catalytic performance in chlorobenzene combustion based on differential kinetics studies. The family obtained by the grinding method presents a performance as high as that synthesized by citrate method. Thus, the reactive grinding is a feasible green chemistry alternative to obtain a catalyst with the same performance as that obtained from traditional methods. Finally, the stability of samples was evaluated under total combustion reaction conditions showing an excellent activity during 45 h time on stream.  相似文献   

12.
Mesoporous CeMnOx composite oxides catalysts were prepared by surfactant-assisted co-precipitation method and used for the catalytic oxidation of toluene.The effect of different cerium precursors[Ce(NO_3)_3 and(NH_4)_2 Ce(NO_3)_6] on catalyst structure,surface properties and toluene combustion activities of mesoporous CeMnO_x catalysts were investigated.The Ce(Ⅲ)MnO_x catalyst prepared from Ce(NO_3)_3 precursor shows higher catalytic activity,with a 90% conversion temperature of 240℃,which is better than the Ce(Ⅳ)MnO_x catalyst derived from(NH_4)_2 Ce(NO_3)_6] precursor.On the basis of characterizations,it reveals that abundant surface content of Mn~(4+),better redox behavior and larger concentration of surface active oxygen species are responsible for the excellent catalytic performance.  相似文献   

13.
A series of MnMgA10 samples with different amounts of Ce doping were facilely prepared using coprecipitation method and their catalytic soot combustion activity was evaluated by temperature programmed oxidation reaction (TPO). The methods of X-ray diffraction (XRD), Brumauer-Emmett-Teller (BET), H2-TPR, NO-TPO and in situ 1R were used to characterize the physio- chemical properties of these samples. Dopant Ce improved the soot combustion performance of MnMgA10 catalyst due to the en- hanced redox ability. Introduction of NOx led to the further increase of catalytic soot oxidation activity on these samples. Over Ce-containing samples, the catalytic activity was slightly decreased as the amount of dopant Ce increased in 02. Diftbrently, in NO+O2, a certain amount of dopant Ce was much more favorable and excess amount of Ce resulted in a sharp drop of the catalytic soot combustion activity. Both NO: and nitrates were found to have great contributions to the effects of NOx on the soot combustion activity of Ce-doped catalysts. More NO2 was generated as dopant Ce increased. When appropriate amount of Ce was introduced, the as-formed NO2 was stored as bridging bidentate nitrate on Mn-Ce site, which was confirmed to have higher reactivity with soot than nitrite or monodentate nitrate on Mn and/or Ce sites. Overall, Mno.sMg2.sCeo.lAlo.90 was considered as the most potential catalyst for soot combustion.  相似文献   

14.
LaCoO3/tourmaline was prepared as catalysts on the methane catalytic combustion. As additive tourmaline, its effect on crystal growth and catalytic activity of LaCoO3, were investigated via X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy(TEM), H2-temperature programmed reduction(H2-TPR) and catalyst evaluation techniques. SEM and TEM indicated that the spontaneous polarizability of tourmaline made LaCoO3 particles grow dispersedly on tourmaline, alleviated the agglomeration and exposed more reactive sites. It was a main influence leading to the improvement of catalysts activity, exposed via catalyst evaluation device. Among the different additive proportion of compound samples, the 2% tourmaline added LaCoO3 showed an obvious enhancement activity compared to non-tourmaline sample—the light-off temperature was 454 °C and CH4 reached the full conversion at 563 °C.  相似文献   

15.
In this paper,the formation mechanism of mesoporous CeO_2 synthesized by thermal decomposition of Ce-MOF and its performance of benzene catalytic combustion,as well as the structure-activity relationship between them were studied in depth.The self-assembly process and physicochemical properties of CeO_2 were characterized by thermogravimetry analysis,powder X-ray diffraction,N_2 adsorption/desorption,high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy techniques.Characterization results show that Ce-MOF is completely decomposed into pure mesoporous CeO_2 when the decomposition temperature is higher than 400℃.At this threshold temperature,CeO_2(400) has the largest specific surface area and pore volume of 114 m~2/g and 0.152 cm3/g,respectively.CeO_2(400) exhibits very high catalytic activity for benzene combustion,which can completely catalyze the degradation of benzene at 260℃.Meanwhile,the mesoporous CeO_2(400) supported Pt nanocrystalline catalysts were prepared by high temperature solution-phase reduction method.Pt/CeO_2(400)can completely degrade benzene at about 200℃ and represents high durability and good waterresistance for benzene combustion during 100 h of continuous reaction.  相似文献   

16.
Yttrium and cerium co-doped ZnO nanoparticles were synthesized by combustion route and characterized using X-ray diffraction(XRD),scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET),energy dispersive spectroscopy(EDS),X-ray photoelectron spectroscopy(XPS),UV-visible diffuse reflectance spectroscopy(UV-vis DRS),photoluminescence(PL)and electrochemical impedance spectroscopy(EIS)techniques.The introduction of yttrium ions has efficiently increased the relative percentage of Ce3+ions in ZnO.Yttrium and cerium co-doped ZnO shows efficient photo activity for hydrogen evolution(10.61 mmol/((g·h))higher than previously reported optimal value for rare earth codoped ZnO photocatalysts.This remarkably increased hydrogen evolution can be ascribed to the synergy between electronic anchoring effect of Y3+/Y2+and Ce4+/Ce3+redox couples.This report presents new idea for the synthesis of efficient photocatalyst using economical route and ion anchoring effect.The hydrogen evolution was also tested using Na2S and Na2SO3as electron donors under visible light illumination.The synthesized photocatalysts also exhibit high stability.  相似文献   

17.
Al2O3 and La2O3 layers were coated respectively on a FeCrAl alloy foil by a dip-coating technique and used as the second support for the active LaMnAl11O19 hexaaluminate (HA) phase in a metallic monolithic catalyst. A sample without an intermediate layer was employed for comparison. The properties and performances of the catalyst were examined with X-ray diffraction (XRD), scanning electron microscopy (SEM), ultrasonic vibration and thermal shock techniques. Methane catalytic combustion was performed to evaluate the activity of the catalyst. The results showed that the activity and adhesion of the HA to the alloy foil could be improved with the introduction of the intermediate layer. Al2O3 provided a strong adhesion, while La2O3 weakened the interaction between the active component and alloy foil. For the activity, the catalysts made with the two different intermediate materials also showed difference.  相似文献   

18.
We employed modified substrates as outer heterogeneous catalysts to reduce the soot originating from the incomplete diesel combustion. Here, we proposed that ceria(CeO2)-based catalysts could lower the temperature at which soot combustion occurred from 610 oC to values included in the operation range of diesel exhausts(270–400 oC). Here, we used the sol-gel method to synthesize catalysts based on mixed oxides(ZnO:CeO2) deposited on cordierite substrates, and modified by ruthenium nanoparticles. The presence of ZnO in these mixed oxides produced defects associated with oxygen vacancies, improving thermal stability, redox potential, sulfur resistance, and oxygen storage. We evaluated the morphological and structural properties of the material by X-ray diffraction(XRD), Brumauer-emmett-teller method(BET), temperature programmed reduction(H2-TPR), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). We investigated how the addition of Ru(0.5 wt.%) affected the catalytic activity of ZnO:CeO2 in terms of soot combustion. Thermogravimetric analysis(TG/DTA) revealed that presence of the catalyst decreased the soot combustion temperature by 250 oC, indicating that the oxygen species arose at low temperatures, which was the main reason for the high reactivity of the oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy(DRS) showed that the catalyst containing Ru on the mixed oxide-impregnated cordierite samples efficiently oxidized soot in a diesel stationary motor: soot emission decreased 80%.  相似文献   

19.
Volatile organic compounds (VOCs) are considered as a major pollutant in indoor and outdoor air.More stringent environmental regulations have been implemented in order to reduce the VOC emissions.One of the techniques available for destructive removal of VOCs is catalytic oxidation.In the present work,Al/Rare Earths (REE: Y,Ce,La,Pr and Nd) pillared clays (PILCs) were used to support 0.2 wt.% of palladium for the complete oxidation of low concentration of benzene.The supports and catalysts were characterized by XRD,N2 adsorp-tion/desorption,FTIR spectroscopy,HRTEM and H2-TPR techniques.The results indicated that after Al and Al/REE pillaring,the basal spac-ing,SBET,Amic and Vmic of Al and AlREE-PILC had a considerable increase compared with those of Na-mmt.Activity tests of deep oxidation of benzene showed that the catalytic activity of Pd catalysts supported on Al and AlREE-PILC were much higher than that on initial clays,which was due to the fact that optimized structure of PILCs,such as large basal spacing,high SBET and porosity,improved Pd dispersion and increased the active sites of Pd.Especially for Pd/AlCe-PILC,the temperature of complete oxidation was about 280 oC,exhibiting the highest catalytic activity.  相似文献   

20.
The catalytic oxidation of ethyl acetate(EA) was studied over CuO/CeO2 catalysts which were prepared by ball milling with different precursors(copper oxide,cerium acetate,cerium dioxide,copper acetate and cerium hydroxide).The CuO/CeO2 catalyst(O-A) prepared with copper oxide and cerium acetate as precursors shows very high catalytic activity that 100% EA conversion is achieved at low temperature of 220℃.It is found that specific surface area(112.8 m2/g),particle...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号