首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel alpha-mannosidase has been identified in rat liver endoplasmic reticulum (ER) which at neutral pH processes the Man9GlcNAc oligosaccharide of glycoproteins by specifically cleaving the terminal mannose residue of the alpha 1,6-linked chain to yield Man8GlcNAc, isomer C. This enzyme accounted for about half of the total ER alpha-mannosidase activity and was fully active at the concentration (0.25 microM) of kifunensine (KIF) completely inhibitory to the action of the ER enzyme which by removing the terminal sugar of the middle chain converts Man9GlcNAc to Man8GlcNAc isomer B; both ER enzymes, however, were inhibited in a similar manner by 1-deoxymannojirimycin (IC50 = 0.2 mM) and their action could not be distinguished with this agent. The KIF-resistant mannosidase which functioned optimally in the presence of 0.1-0.5% Triton X-100 did not show the high susceptibility to EDTA demonstrated by the KIF-sensitive enzyme and unlike the latter had the capacity to hydrolyze p-nitrophenyl-alpha-D-mannoside (Km = 0.45 mM); it had no specific cation requirements, but its activity was greatly reduced in the presence of Zn2+. In isolated ER membranes as well as in intact carbonyl cyanide m-chlorophenylhydrazone-treated cells, the processing pattern was substantially different in the presence of KIF than in its absence; while in the latter instance Man9GlcNAc was readily converted to Man6GlcNAc, the KIF-resistant enzyme was limited in its capacity to go beyond Man8GlcNAc. The KIF-resistant alpha-mannosidase was found in substantial amounts in all cell lines examined (HL-60, BW5147.3, MOLT-4, K-562, HepG2, Chinese hamster ovary, F-9, Madin-Darby canine kidney, FRTL-5). The finding that mannose removal from N-linked oligosaccharides can be initiated in two distinctive manners substantially broadens our concept of the processing events which can occur before a glycoprotein reaches the Golgi complex or to which ER resident molecules can be exposed.  相似文献   

2.
In human fibroblasts, the recognition of lysosomal enzymes by cell surface receptors is mediated by mannose 6-phosphate residues located on oligosaccharides that can be cleaved by endo-beta-N-acetylglucosaminidase H. About half of these oligosaccharides, as isolated from beta-hexosaminidase and cathepsin D secreted by human skin fibroblasts, are anionic. Most of these are resistant to alkaline phosphatase. The resistance is due to alpha-N-acetylglucosamine residues linked to mannose 6-phosphate by a phosphodiester bond. The major phosphorylated oligosaccharides contain one and two and possibly three phosphate groups blocked by N-acetylglucosamine. Besides the blocked phosphate groups these oligosaccharides contain a common inner core consisting of Man alpha 1,6-(Man alpha 1,3)Man alpha 1,6(Man alpha 1,3)Man beta GlcNAc and either one or two alpha 1,2-linked mannose residues.  相似文献   

3.
The periplasmic invertase was purified from Saccharomyces cerevisiae och1::LEU2 disruptant cells (delta och1), which have a defect in elongation of the outer chain attached to the N-linked core oligosaccharides (Nakayama, K., Nagasu, T., Shimma, Y., Kuromatsu, J., and Jigami, Y. (1992) EMBO J. 11, 2511-2519). Structural analysis of the pyridylaminated (PA) neutral oligosaccharides released by hydrazinolysis and N-acetylation confirmed that the och1 mutation causes a complete loss of the alpha-1,6-polymannose outer chain, although the PA oligosaccharides (Man9GlcNAc2-PA and Man10GlcNAc2-PA), in which one or two alpha-1,3-linked mannose(s) attached to the endoplasmic reticulumn (ER)-form core oligosaccharide (Man8GlcNAc2) were also detected. Analysis of the delta och1 mnn1 strain oligosaccharides released from total cell mannoprotein revealed that the delta och1 mnn1 mutant eliminates the alpha-1,3-mannose attached to the core and accumulates predominantly a single ER-form oligosaccharide species (Man8GlcNAc2), suggesting a potential use of this strain as a host cell to produce glycoproteins containing mammalian high mannose type oligosaccharides. The delta och1 mnn1 alg3 mutants accumulated Man5GlcNAc2 and Man8GlcNAc2 in total cell mannoprotein, confirming the lack of outer chain addition to the incomplete corelike oligosaccharide and the leaky phenotype of the alg3 mutation. All the results suggest that the OCH1 gene encodes an alpha-1,6-mannosyltransferase that is functional in the initiation of alpha-1,6-polymannose outer chain addition to the N-linked core oligosaccharide (Man5GlcNAc2 and Man8GlcNAc2) in yeast.  相似文献   

4.
In order to elucidate the relationship between glycosylation of IgG and aging, oligosaccharide structures of human IgG purified from sera of men and women aged 18 to 73 years were investigated. Oligosaccharides were liberated quantitatively from IgG by hydrazinolysis followed by N-acetylation and were tagged with p-aminobenzoic acid ethyl ester. The oligosaccharide structures were then analyzed by HPLC in conjunction with sequential exoglycosidase digestion. All IgG samples were shown to contain a series of biantennary complex type oligosaccharides which consisted of +/-Galbeta1-4GlcNAcbeta1-2Manalpha1-6(+/-GlcNAcbeta 1-4)(+/-Galbeta1-4GlcNAcbeta1-2Man(alpha)1-3)Man(beta)1-+ ++4GlcNAcbeta1-4(+/- Fucalpha1-6)GlcNAc and their mono- and disialo glycoforms in different ratios. In female IgG samples only, the incidence of non-galactosylated oligosaccharides with non-reducing terminal GlcNAc residues increased with aging (r>0.8), whereas that of digalactosylated oligosaccharides decreased (r<-0.8). A weaker correlation was observed between aging and the incidence of neutral and monosialo oligosaccharides in female IgG (r=0.461 and r= -0.538, respectively) and between aging and the incidence of oligosaccharides with a bisecting GlcNAc in both male and female IgG samples (r=0.566 and r=0.440, respectively). In addition, a significant change with aging in the galactosylation of IgG oligosaccharides was observed in females in their thirties, fifties, and sixties (p<0.02, p<0.01, and p<0.04, respectively). These findings may contribute to our understanding of autoimmune diseases such as rheumatoid arthritis in which glycosylation is involved.  相似文献   

5.
The carbohydrate moieties of hen ovomucoid were released as oligosaccharides by hydrazinolysis. The neutral oligosaccharide fraction which comprised about 85% of the total sugar was fractionated into eight oligosaccharide fractions by Bio-Gel P-4 column chromatography. Occurrence of novel penta-antennary oligosaccharides in the larger three fractions was reported in the preceding paper (Yamashita, K., Kamerling, J.P., and Kobata, A. (1982) J. Biol. Chem. 257, 12809-12814). Structural studies of the remaining smaller oligosaccharides indicated that they all have Man alpha 1 leads to 6(Man alpha 1 leads to 3)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc as their common core. The alpha-mannosyl residues occur either free or as one of the following five groups: GlcNAc beta 1 leads to 2Man, GlcNAc beta 1 leads to 4Man, GlcNAc beta 1 leads to 4(GlcNAc beta 1 leads to 2)Man, GlcNAc beta 1 leads to 6(GlcNAc beta 1 leads to 2)Man, and GlcNAc beta 1 leads to 6(GlcNAc beta 1 leads to 4)(GlcNAc beta 1 leads to 2) Man. In most oligosaccharides, a beta-N-acetylglucosamine residue is linked at the C-4 position of the beta-mannosyl residue of the core. The structural characteristic of the sugar chains of hen ovomucoid indicated that they are not formed by the ordinary processing pathway of the asparagine-linked sugar chains.  相似文献   

6.
In Saccharomyces cerevisiae, transfer of N-linked oligosaccharides is immediately followed by trimming of ER-localized glycosidases. We analyzed the influence of specific oligosaccharide structures for degradation of misfolded carboxypeptidase Y (CPY). By studying the trimming reactions in vivo, we found that removal of the terminal alpha1,2 glucose and the first alpha1,3 glucose by glucosidase I and glucosidase II respectively, occurred rapidly, whereas mannose cleavage by mannosidase I was slow. Transport and maturation of correctly folded CPY was not dependent on oligosaccharide structure. However, degradation of misfolded CPY was dependent on specific trimming steps. Degradation of misfolded CPY with N-linked oligosaccharides containing glucose residues was less efficient compared with misfolded CPY bearing the correctly trimmed Man8GlcNAc2 oligosaccharide. Reduced rate of degradation was mainly observed for misfolded CPY bearing Man6GlcNAc2, Man7GlcNAc2 and Man9GlcNAc2 oligosaccharides, whereas Man8GlcNAc2 and, to a lesser extent, Man5GlcNAc2 oligosaccharides supported degradation. These results suggest a role for the Man8GlcNAc2 oligosaccharide in the degradation process. They may indicate the presence of a Man8GlcNAc2-binding lectin involved in targeting of misfolded glycoproteins to degradation in S. cerevisiae.  相似文献   

7.
Human cyclooxygenase-2 (hCox-2) is a key enzyme in the biosynthesis of prostaglandins and the target of nonsteroidal anti-inflammatory drugs. Recombinant hCox-2 overexpressed in a vaccinia virus (VV)-COS-7 system comprises two glycoforms. Removal of the N-glycosylation consensus sequence at Asn580 (N580Q and S582A mutants) resulted in the expression of protein comprising a single glycoform, consistent with the partial N-glycosylation at this site in the wild-type (WT) enzyme. The specific cyclooxygenase activities of the purified WT and N580Q mutant were equivalent (40 +/- 3 mumol O2/min/mg) and titrations with diclofenac showed no difference in inhibitor sensitivities of WT and both mutants. Results of the expression of WT and N580Q hCox-2 in a Drosophila S2 cell system were also consistent with the N-glycosylation at this site, but low levels of activity were obtained. High levels of N-glycosylation heterogeneity are observed in hCox-2 expressed using recombinant baculovirus (BV) in Sf9 cells. Expression of a double N-glycosylation site mutant in Sf9 cells, N580Q/N592Q, resulted in a decrease in glycosylation but no clear decrease in heterogeneity, indicating that the high degree of N-glycosylation heterogeneity observed with the BV-Sf9 system is not due to partial glycosylation of both Asn580 and Asn592. N-linked oligosaccharide profiling of purified VV and BV WT and S582A mutant hCox-2 showed the presence of high mannose structures, (Man)n (GlcNAc)2, n = 9, 8, 7, 6. The S582A mutant was the most homogeneous with (Man)9(GlcNAc)2 comprising greater than 50% of oligosaccharides present. Analysis of purified VV WT and S582A mutant hCox-2 by liquid chromatography-electrospray ionization-mass spectrometry showed an envelope of peaks separated by approximately 160 Da, corresponding to differences of a single monosaccharide. The difference between the highest mass peaks of the two envelopes, of approximately 1500 Da, is consistent with the wild-type enzyme containing an additional high mannose oligosaccharide.  相似文献   

8.
Calnexin and calreticulin are homologous molecular chaperones of the endoplasmic reticulum. Their binding to newly synthesized glycoproteins is mediated, at least in part, by a lectin site that recognizes the early N-linked oligosaccharide processing intermediate, Glc1Man9GlcNAc2. We compared the oligosaccharide binding specificities of calnexin and calreticulin in an effort to determine the basis for reported differences in their association with various glycoproteins. Using mono-, di-, and oligosaccharides to inhibit the binding of Glc1Man9GlcNAc2 to calreticulin and to a truncated, soluble form of calnexin, we show that the entire Glc alpha 1-3Man alpha 1-2Man alpha 1-2Man structure, extending from the alpha 1-3 branch point of the oligosaccharide core, is recognized by both proteins. Furthermore, analysis of the binding of monoglucosylated oligosaccharides containing progressively fewer mannose residues suggests that for both proteins the alpha 1-6 mannose branch point of the oligosaccharide core is also essential for recognition. Consistent with their essentially identical substrate specificities, calnexin and calreticulin exhibited the same relative affinities when competing for binding to the Glc1Man9GlcNAc2 oligosaccharide. Thus, differential glycoprotein binding cannot be attributed to differences in the lectin specificities or binding affinities of calnexin and calreticulin. We also examined the effects of ATP, calcium, and disulfide reduction on the lectin properties of calnexin and calreticulin. Whereas oligosaccharide binding was only slightly enhanced for both proteins in the presence of high concentrations of a number of adenosine nucleotides, removal of bound calcium abrogated oligosaccharide binding, an effect that was largely reversible upon readdition of calcium. Disulfide reduction had no effect on oligosaccharide binding by calnexin, but binding by calreticulin was inhibited by 70%. Finally, deletion mutagenesis of calnexin and calreticulin identified a central proline-rich region characterized by two tandem repeat motifs as a segment capable of binding oligosaccharide. This segment bears no sequence homology to the carbohydrate recognition domains of other lectins.  相似文献   

9.
Three endopolygalacturonases (endoPG Ia, Ib, and Ic) were isolated from the culture filtrate of Stereum purpureum, the causative fungus of apple silver-leaf disease. Their properties, including specific activities, optimum pHs, thermal stabilities, and kinetic parameters (K(m) and Vmax) were compared. Their properties were very similar to one another except for the substrate specificity and relative molecular mass. The sugar chains of endoPG Is were released by hydrazinolysis, and one major sugar chain common to endoPG Is was isolated. The pyridylamino sugar was characterized by a two-dimensional mapping method using HPLC, and identified as a high mannose type N-linked sugar chain, Man alpha 1-6(Man alpha 1-3)Man alpha 1-6(Man alpha 1-3) Man beta 1-4 GlcNAc beta 1-4 GlcNAc (designated as M5.1). Observation of the course of Western blot analysis for the proteins from the culture filtrate with endoPG I antibodies showed that the fungus secreted three endoPG Is into the culture broth during the growing period.  相似文献   

10.
Stable BHK-21 cell lines were constructed expressing the Golgi membrane-bound form and two secretory forms of the human alpha1, 3/4-fucosyltransferase (amino acids 35-361 and 46-361). It was found that 40% of the enzyme activity synthesized by cells transfected with the Golgi form of the fucosyltransferase was constitutively secreted into the medium. The corresponding enzyme detected by Western blot had an apparent molecular mass similar to those of the truncated secretory forms. The secretory variant (amino acids 46-361) was purified by a single affinity-chromatography step on GDP-Fractogel resin with a 20% final recovery. The purified enzyme had a unique NH2 terminus and contained N-linked endo H sensitive carbohydrate chains at its two glycosylation sites. The fucosyltransferase transferred fucose to the O-4 position of GlcNAc in small oligosaccharides, glycolipids, glycopeptides, and glycoproteins containing the type I Galbeta1-3GlcNAc motif. The acceptor oligosaccharide in bovine asialofetuin was identified as the Man-3 branched triantennary isomer with one Galbeta1-3GlcNAc. The type II motif Galbeta1-4GlcNAc in bi-, tri-, or tetraantennary neutral or alpha2-3/alpha2-6 sialylated oligosaccharides with or without N-acetyllactosamine repeats and in native glycoproteins were not modified. The soluble forms of fucosyltransferase III secreted by stably transfected cells may be used for in vitro synthesis of the Lewisa determinant on carbohydrates and glycoproteins, whereas Lewisx and sialyl-Lewisx structures cannot be synthesized.  相似文献   

11.
During studies on the fucosylation of endogenous proteins in parental (Pro5) and N-acetyl-D-glucosamine (GlcNAc) transferase I-deficient (Lec1) Chinese hamster ovary (CHO) cells, we observed that Lec1 cells incorporate approximately 10-fold less [3H]fucose into macromolecules than Pro5 cells. Interestingly, most of the labelled oligosaccharides from both cell types could be released from the macromolecules by digestion with peptide N-glycosidase F (PNGase F). This was unexpected for Lec1 cells because they do not synthesize complex- or hybrid-type N-glycans. Structural analyses of the fucosylated oligosaccharides from Lec1 cells showed the fucose to be in an alpha 1,6 linkage to the core GlcNAc of relatively small oligomannose N-glycans (Man4GlcNAc2 and Man5GlcNAc2, where Man is D-mannose). Comparing the sizes of oligomannose N-glycans from Pro5 and Lec1 cells demonstrated a much higher proportion of the small (Man4GlcNAc2 and Man5GlcNAc2) oligomannose species in Lec1 cells. These results suggest that the core alpha 1,6 fucosyltransferase will fucosylate small (Man4-Man5GlcNAc2), but not large (Man8-Man9GlcNAc2) oligomannose N-glycans.  相似文献   

12.
The catalytic domains of murine Golgi alpha1,2-mannosidases IA and IB that are involved in N-glycan processing were expressed as secreted proteins in P.pastoris . Recombinant mannosidases IA and IB both required divalent cations for activity, were inhibited by deoxymannojirimycin and kifunensine, and exhibited similar catalytic constants using Manalpha1,2Manalpha-O-CH3as substrate. Mannosidase IA was purified as a 50 kDa catalytically active soluble fragment and shown to be an inverting glycosidase. Recombinant mannosidases IA and IB were used to cleave Man9GlcNAc and the isomers produced were identified by high performance liquid chromatography and proton-nuclear magnetic resonance spectroscopy. Man9GlcNAc was rapidly cleaved by both enzymes to Man6GlcNAc, followed by a much slower conversion to Man5GlcNAc. The same isomers of Man7GlcNAc and Man6GlcNAc were produced by both enzymes but different isomers of Man8GlcNAc were formed. When Man8GlcNAc (Man8B isomer) was used as substrate, rapid conversion to Man5GlcNAc was observed, and the same oligosaccharide isomer intermediates were formed by both enzymes. These results combined with proton-nuclear magnetic resonance spectroscopy data demonstrate that it is the terminal alpha1, 2-mannose residue missing in the Man8B isomer that is cleaved from Man9GlcNAc at a much slower rate. When rat liver endoplasmic reticulum membrane extracts were incubated with Man9GlcNAc2, Man8GlcNAc2was the major product and Man8B was the major isomer. In contrast, rat liver Golgi membranes rapidly cleaved Man9GlcNAc2to Man6GlcNAc2and more slowly to Man5GlcNAc2. In this case all three isomers of Man8GlcNAc2were formed as intermediates, but a distinctive isomer, Man8A, was predominant. Antiserum to recombinant mannosidase IA immunoprecipitated an enzyme from Golgi extracts with the same specificity as recombinant mannosidase IA. These immunodepleted membranes were enriched in a Man9GlcNAc2to Man8GlcNAc2-cleaving activity forming predominantly the Man8B isomer. These results suggest that mannosidases IA and IB in Golgi membranes prefer the Man8B isomer generated by a complementary mannosidase that removes a single mannose from Man9GlcNAc2.  相似文献   

13.
Two mannose-binding lectins, Allium sativum agglutinin (ASA) I (25 kDa) and ASAIII (48 kDa), from garlic bulbs have been purified by affinity chromatography followed by gel filtration. The subunit structures of these lectins are different, but they display similar sugar specificities. Both ASAI and ASAIII are made up of 12.5- and 11.5-kDa subunits. In addition, a complex (136 kDa) comprising a polypeptide chain of 54 +/- 4 kDa and the subunits of ASAI and ASAIII elutes earlier than these lectins on gel filtration. The 54-kDa subunit is proven to be alliinase, which is known to form a complex with garlic lectins. Constituent subunits of ASAI and ASAIII exhibit the same sequence at their amino termini. ASAI and ASAIII recognize monosaccharides in mannosyl configuration. The potencies of the ligands for ASAs increase in the following order: mannobiose (Manalpha1-3Man) < mannotriose (Manalpha1-6Manalpha1-3Man) approximately mannopentaose < Man9-oligosaccharide. The addition of two GlcNAc residues at the reducing end of mannotriose or mannopentaose enhances their potencies significantly, whereas substitution of both alpha1-3- and alpha1-6-mannosyl residues of mannotriose with GlcNAc at the nonreducing end increases their activity only marginally. The best manno-oligosaccharide ligand is Man9GlcNAc2Asn, which bears several alpha1-2-linked mannose residues. Interaction with glycoproteins suggests that these lectins recognize internal mannose as well as bind to the core pentasaccharide of N-linked glycans even when it is sialylated. The strongest inhibitors are the high mannose-containing glycoproteins, which carry larger glycan chains. Indeed, invertase, which contains 85% of its mannose residues in species larger than Man20GlcNAc, exhibited the highest binding affinity. No other mannose- or mannose/glucose-binding lectin has been shown to display such a specificity.  相似文献   

14.
Artocarpin, a mannose-specific lectin, is a homotetrameric protein (M(r) 65,000) devoid of covalently attached carbohydrates and consists of four isolectins with pI in the range 5-6.5. Investigations of its carbohydrate binding specificity reveal that among monosaccharides, mannose is preferred over glucose. Among mannooligosaccharides, mannotriose (Man alpha 1-3[Man alpha 1-6]Man) and mannopentaose are the strongest ligands followed by Man alpha 1-3Man. Extension of these ligands by GlcNAc at the reducing ends of mannooligosaccharides tested remarkably improves their inhibitory potencies, while substitution of both the alpha 1-3 and alpha 1-6 mannosyl residues of mannotriose and the core pentasaccharide of N-linked glycans (Man alpha 1-3[Man alpha 1-6]Man beta 1-4GlcNAc beta 1-4GlcNAc) by GlcNAc or N-acetyllactosamine in beta 1-2 linkage diminishes their inhibitory potencies. Sialylated oligosaccharides are non-inhibitory. Moreover, the substitution of either alpha 1-3 or alpha 1-6 linked mannosyl residues of M5Gn or both by mannose in alpha 1-2 linkage leads to a considerable reduction of their inhibitory power. Addition of a xylose residue in beta 1-2 linkage to the core pentasaccharide improves the inhibitory activity. Considering the fact that artocarpin has the strongest affinity for the xylose containing hepasaccharide from horseradish peroxidase, which differs significantly from all the mannose/glucose-specific lectins, it should prove a useful tool for the isolation and characterization of glycoproteins displaying such structure.  相似文献   

15.
The alpha 1,2-mannosidase from Saccharomyces cerevisiae, which removes one specific alpha 1,2-linked mannose residue from Man9GlcNAc2, is a member of the Class 1 alpha 1,2-mannosidase family conserved from yeast to mammals. Although Class 1 alpha 1,2-mannosidases are essential for the maturation of N-linked oligosaccharides in mammalian cells, nothing is known about their mechanism of action. The availability of sufficient quantities of recombinant yeast alpha 1,2-mannosidase and its homology with the mammalian enzymes make it a good model to study the catalytic mechanism of this family of alpha 1,2-mannosidases. The stereochemical course of hydrolysis of Man9GlcNAc by the yeast enzyme was followed by proton nuclear magnetic resonance spectroscopy. It was observed that beta-D-mannose is related from the oligosaccharide substrate, thereby demonstrating that the enzyme is of the inverting type.  相似文献   

16.
Employing antisera against various subfractions of rat liver mitochondria (mitoplast, inner membrane, intermembrane, and matrix) as well as metabolically radiolabeled BRL-3A rat liver cells, we undertook a search for the presence of glycoproteins in this major cellular compartment for which little information in regard to glycoconjugates was available. Subsequent to [35S]methionine labeling of BRL-3A cells, a peptide:N-glycosidase-sensitive protein (45 kDa) was observed by SDS-polyacrylamide gel electrophoresis of the inner membrane immunoprecipitate, which was reduced to a molecular mass of 42 kDa by this enzyme. The 45-kDa protein was readily labeled with [2-3H]mannose, and indeed the radioactivity of the inner membrane immunoprecipitate was almost exclusively present in this component. Moreover, antisera directed against mitochondrial NADH-ubiquinone oxidoreductase (complex I) or F1F0-ATPase (complex V) also precipitated a 45-kDa protein from BRL-3A cell lysates as the predominant mannose-radiolabeled constituent. Endo-beta-N-acetylglucosaminidase completely removed the radiolabel from this glycoprotein, and the released oligosaccharides were of the partially trimmed polymannose type (Glc1Man9GlcNAc to Man8GlcNAc). Cycloheximide as well as tunicamycin resulted in total inhibition of radiolabeling of the inner membrane glycoprotein, and moreover, pulse-chase studies employing metrizamide density gradient centrifugation demonstrated that the glycoprotein was initially present in the endoplasmic reticulum (ER) and subsequently appeared in a mitochondrial location. Early movement of the glycoprotein to the mitochondria after synthesis in the ER was also evident from the limited processing undergone by its N-linked oligosaccharides; this stood in contrast to lysosomal glycoproteins in which we noted extensive conversion to complex oligosaccharides. Our findings suggest that the 45-kDa glycoprotein migrates from ER to mitochondria by the previously observed contact sites between the two organelles. Furthermore, the presence of this glycoprotein in at least two major mitochondrial multienzyme complexes would be consistent with a role in mitochondrial translocations.  相似文献   

17.
The circulating half-lives of the four isozymes of bovine pancreatic ribonuclease (RNases A, B, C, and D) have been determined in normal and in nephrectomized rats. The isozymes differ only in their glycosyl content. While A contains no sugars, B has a simple oligosaccharide (GlcNAc2 Man4-5),and C and D each have a complex oligosaccharide (GlcNAc4 Man 2-3 Gal2 Fuc NeuAc2, and GlcNAc4 Man3 Gal2 Fuc NeuAc4, respectively) attached to Asn-34 of the polypeptide chain. All four isozymes were cleared rapidly in normal rats (t 1/2 = 2 to 3 min), as expected on the basis of the established role of the kidneys in removing low molecular weight proteins from circulation. In nephrectomized rats, however, a much slower clearance was observed, thus permitting the evaluation of the role of the carbohydrate chains in the catabolism of the isozymes. The clearance curves can be analyzed in terms of two processes, a rapid initial one, shown to represent the equilibration of the injected enzyme into extravascular space, and a second one which is interpreted as the catabolic clearance of the enzyme. The haf-life of the RNase isozymes was calculated from this second process and found to be in the range 528 to 577 min for RNase A, 15 min for RNase B, 681 to 862 min for RNase C, and 839 to 941 min for RNase D. The rapidly cleared RNase B was treated with alpha-mannosidase to remove 3 of the 4 mannosyl residues, leaving only a trisaccharide (GlcNAc2-betaMan) attached to the protein. The half-life of this RNase B derivatives was found to be in the range 616 to 733 min. From these results it is concluded (a) that the addition of complex oligosaccharides to a protein does not have any significant direct effect on its circulating half-life (RNases C and D compared to RNase A), and (b) that in the rat there exists a mechanism for clearing glycoproteins based on specific recognition of exposed alpha-mannosyl residues (RNase B compared to the other isozymes and to alpha-mannosidase-treated RNase B).  相似文献   

18.
A key element in the quality control of glycoprotein folding is the UDP-Glc:glycoprotein glucosyltransferase (GT), which in cell-free assays exclusively glucosylates misfolded glycoproteins. In order to test if such a protein conformation is a sufficient condition for in vivo glucosylation of all N-linked oligosaccharides by GT, a Schizosaccharomyces pombe double mutant (gls2/alg6) was constructed. With this mutant, Man9GlcNAc2 is transferred to proteins and no removal of glucose units added by GT occurs as it lacks glucosidase II. The same proportion of glucosylated (Glc1Man9GlcNAc2) and unglucosylated (Man9GlcNAc2 and Man8GlcNAc2) endoplasmic reticulum (ER)-specific compounds was produced when cells were pre-incubated for 10, 20 or 30 min and further incubated with [14C]glucose for 10 min at 28 degrees C with or without 5 mM dithiothreitol (DTT), thus indicating not only that DTT did not affect protein glucosylation but also that no increased glucosylation of glycoproteins occurred in the presence of the drug. Monitoring Golgi-specific modifications of oligosaccharides after pulse-chase experiments performed in the presence or absence of 5 mM DTT showed that exit of the bulk of glycoproteins synthesized from the ER and thence their proper folding had been prevented by the drug. Cells pulse-chase labeled at 37 degrees C in the absence of DTT also yielded glucosylated and unglucosylated protein-linked oligosaccharides without Golgi-specific modifications. It was concluded that a misfolded protein conformation is not a sufficient condition for in vivo glucosylation of all N-linked oligosaccharides by GT.  相似文献   

19.
Interaction of monoglucosylated oligosaccharides with ER lectins (calnexin and/or calreticulin) facilitates glycoprotein folding but this interaction is not essential for cell viability under normal conditions. We obtained two distinct single Schizosaccharomyces pombe mutants deficient in either one of the two pathways leading to the formation of monoglucosylated oligosaccharides. The alg6 mutant does not glucosy- late lipid-linked oligosaccharides and transfers Man9GlcNAc2 to nascent polypeptide chains and the gpt1 mutant lacks UDP-Glc:glycoprotein glucosyltransferase (GT). Both single mutants grew normally at 28 degreesC. On the other hand, gpt1/alg6 double-mutant cells grew very slowly and with a rounded morphology at 28 degreesC and did not grow at 37 degreesC. The wild-type phenotype was restored by transfection of the double mutant with a GT-encoding expression vector or by addition of 1 M sorbitol to the medium, indicating that the double mutant is affected in cell wall formation. It is suggested that facilitation of glycoprotein folding mediated by the interaction of monoglucosylated oligosaccharides with calnexin is essential for cell viability under conditions of extreme ER stress such as underglycosylation of proteins caused by the alg6 mutation and high temperature. In contrast, gls2/alg6 double-mutant cells that transfer Man9GlcNAc2 and that are unable to remove the glucose units added by GT as they lack glucosidase II (GII), grew at 37 degreesC and had, when grown at 28 degreesC, a phenotype of growth and morphology almost identical to that of wild-type cells. These results indicate that facilitation of glycoprotein folding mediated by the interaction of calnexin and monoglucosylated oligosaccharides does not necessarily require cycles of reglucosylation-deglucosylation catalyzed by GT and GII.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号