首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A computational analysis of heat transfer augmentation and flow characteristics due to artificial roughness in the form of ribs on a broad, heated wall of a rectangular duct for turbulent flow (Reynolds number range 3000–20,000, which is relevant in solar air heater) has been carried out. Shear stress transport kω turbulence model is selected by comparing the predictions of different turbulence models with experimental results available in the literature. A detailed analysis of heat transfer variation within inter rib region is done by using the selected turbulence model. The analysis shows that peak in local heat transfer coefficient occurs at the point of reattachment of the separated flow as observed experimentally. The results predict a significant enhancement of heat transfer in comparison to that for a smooth surface. There is a good matching between the predictions by SST kω and experimental results. In this work, nine different shapes of rib are examined using SST kω model and compared on the basis of heat transfer enhancement, friction characteristics and performance index considering heat transfer enhancement with the same pumping power.  相似文献   

2.
This paper focuses on the experimental study on friction factor and the numerical simulation on the periodic fully developed fluid flow and heat transfer in an alternating elliptical axis tube (AEAT). The experimental results show that in the laminar flow regime fRe = 84.7, and the transition from laminar to turbulent flow occurs at an earlier Reynolds number about 1000. The predicted cycle average Nusselt numbers from the standard kε model and RNG kε model are quite close to each other, which are appreciably higher than that of elliptic tube and round tube. Heat transfer performance comparisons are made under identical pumping power constraint, showing the obvious superiority of AEAT over a round tubes. In addition, the complicated multi-longitudinal vortex structure of the flow is detected in detail from the numerical simulation results, which improves the synergy between velocity field and temperature gradient in a large extent, hence, greatly enhancing the convective heat transfer.  相似文献   

3.
The article presents the application of a mathematical model for simulation of the swirling flow in a tube induced by loose-fit twisted tape insertion. Effects of the clearance ratio defined as ratio of clearance between the edge of tape and tube wall to tube diameter (CR = c/D = 0.0 (tight-fit), 0.1, 0.2 and 0.3) on heat transfer enhancement (Nu), friction factor (f) and thermal performance factor (η) are numerically investigated for twisted tapes at two different twist ratios (y/w = 2.5 and 5.0). The simulation is conducted in order to gain an understanding of physical behavior of the thermal and fluid flow in the tube fitted with loose-fit twisted tape under constant wall temperature conditions in the turbulent flow regime for the Reynolds number ranging from 3000 to 10,000. The Navier–Stokes equation in common with a energy equation is solved using the SIMPLE technique with the standard kε turbulence model, the Renormalized Group (RNG) kε turbulence model, the standard kω turbulence model, and Shear Stress Transport (SST) kω turbulence model. The numerical results show that the predictions of heat transfer (Nu) and friction factor (f) based on the SST kω turbulence models are in better agreement with Manglik and Bergles [R.M. Manglik, A.E. Bergles, Heat transfer and pressure drop correlations for twisted-tape inserts in isothermal tubes, part II: Transition and turbulent flows, Transaction ASME, Journal of Heat Transfer, 115 (1993) 890–896.] than other turbulence models. The mean flow patterns in a tube with loose-fit twisted tapes in terms of contour plots of velocity, pathline, pressure, temperature and turbulent kinetics energy (TKE) are presented and compared with those in a tube fitted with tight-fit twisted tapes. It is visible that the twisted tape inserts for y/w = 2.5 with CR = 0.0 (tight-fit), 0.1, 0.2 and 0.3 can enhance heat transfer rates up to 73.6%, 46.6%, 17.5% and 20%, respectively and increase friction factors up to 330%, 262%, 189%, and 160%, respectively, in comparison with those of the plain tube. The tube with loose-fit twisted tape inserts with CR = 0.1, 0.2 and 0.3 provide heat transfer enhancement around 15.6%, 33.3% and 31.6% lower than those with CR = 0.0 (the tight-fit twisted tape). The heat transfer augmentation is expected to involve the swirl flow formation between the tape and a tube wall. In addition, the simulation for thermal performance factor (η) of a tube with the loose-fit twisted tape and the tight-fit twisted tape under the same pumping power is also conducted, for comparison.  相似文献   

4.
The heat transfer study of a combined wall jet and offset jet flow with different wall jet and offset jet flow velocities are considered. The flow is considered two-dimensional, steady, incompressible, turbulent at high Reynolds number with negligible body forces. The streamline curvature modification of the standard kε model is used to carry out the turbulence modeling. The Reynolds number is varied from 104 to 4 × 104 and Pr = 0.71 is taken for all computations. Constant wall temperature and constant wall heat flux boundary conditions are considered. The results are presented in the form of local Nusselt number, local heat flux, surface temperature in case of constant heat flux condition, average Nusselt number and total heat transfer.  相似文献   

5.
This paper documents a computational investigation of the film cooling effectiveness of a 3-D gas turbine endwall with one fan-shaped cooling hole. The simulations were performed for adiabatic and conjugate heat transfer models. Turbulence closure was investigated using three different turbulence models: the realizable kε model, the SST kω model, as well as the v2f turbulence model. Results were obtained for a blowing ratio of one, and a coolant-to-mainflow temperature ratio of 0.54. The simulations used a dense, high quality, O-type, hexahedral grid with three different schemes of meshing for the cooling hole: hexahedral-, hybrid-, and tetrahedral-topology grid. The computed flow/temperature fields are presented, in addition to local, two-dimensional distribution of film cooling effectiveness for the adiabatic and conjugate cases. Results are compared to experimental data in terms of centerline film cooling effectiveness downstream cooling-hole, the predictions with realizable kε turbulence model exhibited the best agreement especially in the region for (2 ≤ x/D ≤ 6). Also, the results show the effect of the conjugate heat transfer on the temperature (effectiveness) field in the film cooling hole region and, thus, the additional heating up of the cooling jet itself.  相似文献   

6.
Convection heat transfer of CO2 at supercritical pressures in a 0.27 mm diameter vertical mini-tube was investigated experimentally and numerically for inlet Reynolds numbers exceeding 4.0 × 103. The tests investigated the effects of heat flux, flow direction, buoyancy and flow acceleration on the convection heat transfer. The experimental results indicate that the flow direction, buoyancy and flow acceleration have little influence on the local wall temperature, with no deterioration of the convection heat transfer observed in either flow direction for the studied conditions. The heat transfer coefficient initially increases with increasing heat flux and then decreases with further increases in the heat flux for both upward and downward flows. These phenomena are due to the variation of the thermophysical properties, especially cp. The numerical results correspond well with the experimental data using several turbulence models, especially the Realizable kε turbulence model.  相似文献   

7.
This paper reports numerical and experimental investigation of stratified gas–liquid two-phase flow in horizontal circular pipes. The Reynolds averaged Navier–Stokes equations (RANS) with the kω turbulence model for a fully developed stratified gas–liquid two-phase flow are solved by using the finite element method. A smooth interface surface is assumed without considering the effects of the interfacial waves. The continuity of the shear stress across the interface is enforced with the continuity of the velocity being automatically satisfied by the variational formulation. For each given interface position and longitudinal pressure gradient, an inner iteration loop runs to solve the non-linear equations. The Newton–Raphson scheme is used to solve the transcendental equations by an outer iteration to determine the interface position and pressure gradient for a given pair of volumetric flow rates. Favorable comparison of the numerical results with available experimental results indicates that the kω model can be applied for the numerical simulation of stratified gas–liquid two-phase flow.  相似文献   

8.
A new turbulence model which is a hybrid of the k-ε model and an algebraic Reynolds stress model (ASM) is developed. This model takes from an ASM that part of the non-isotropic Reynolds stress which is due to buoyancy, and the remaining part from the k-ε model. This concept is also applicable to flows with rotation where the Coriolis forces affect the turbulence by increasing its non-isotropy. The model is tested in a buoyancy-driven cavity flow. The contributions from the ASM corrections to the Reynolds stress and the turbulent heat flux are up to five and ten times, respectively, larger than those from the k-ε model.  相似文献   

9.
This paper shows the effects of clearance length between a body and a duct wall, and duct height on the heat transfer characteristics and flow behavior at a downstream region of the body when a blunt body was set in a parallel plate duct with some distance separating it from the duct wall as a turbulence promoter. For the ratio of clearance to body height, C/D = 0.05–01, the heat transfer was characterized by the reattachment of shear flow separated from the body. Furthermore, the heat transfer depended on both the reattachment flow and the separation vortex at C/D = 0.15–0.2, and the side vortex induced by Karman vortex at C/D = 0.25–0.275 was also observed. We found the reattachment flow gives a superior effect to enhance heat transfer at a low Reynolds number, but at a larger Reynolds number, the side vortex induced by Karman vortex becomes more effective to heat transfer enhancement. © 2005 Wiley Periodicals, Inc. Heat Trans Asian Res, 34(5): 336–349, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20067  相似文献   

10.
Flow and heat transfer predictions in modern low emission combustors are critical to maintaining the liner wall at reasonable temperatures. This study is the first to focus on a critical issue for combustor design. The objective of this paper is to understand the effect of different swirl angle for a dry low emission (DLE) combustor on flow and heat transfer distributions. This paper provides the effect of fuel nozzle swirl angle on velocity distributions, temperature, and surface heat transfer coefficients. A simple test model is investigated with flow through fuel nozzles without reactive flow. The fuel nozzle angle is varied to obtain different swirl conditions inside the combustor. The effect of flow Reynolds number and swirl number are investigated using FLUENT. Different RANS-based turbulence models are tested to determine the ability of these models to predict the swirling flow. For comparison, different turbulence models such as standard k ? ε, realizable k ? ε, and shear stress transport (SST) k?ω turbulence model were studied for non-reactive flow conditions. The results show that, for a high degree swirl flow, the SST k?ω model can provide more reasonable predictions for recirculation and high velocity gradients. With increasing swirl angle, the average surface heat transfer coefficient increases while the average static temperature will decrease. Preliminary analysis shows that the k?ω model is the best model for predicting swirling flows. Also critical is the effect of the swirling flows on the liner wall heat transfer. The strength and magnitude of the swirl determines the local heat transfer maxima location. This location needs to be cooled more effectively by various cooling schemes.  相似文献   

11.
Fluid flow and heat transfer in the mini-rectangular fin heat sink for CPU of PC using de-ionized water as working fluid are numerically investigated. Based on the real PC operating conditions, the three-dimensional governing equations for fluid flow and heat transfer characteristics are solved using finite volume scheme. The standard kε turbulent model is employed to describe the flow structure and behavior. The predicted results obtained from the model are verified by the measured data. There is a reasonable agreement between the predicted results and experiments. The results of this study are expected to lead to guidelines that will allow the design of the cooling system with improved cooling performance of the electronic equipments increasing reliable operation of these devices.  相似文献   

12.
Convection heat transfer of CO2 at super-critical pressures during cooling in a vertical small tube with inner diameter of 2.00 mm was investigated experimentally and numerically. The local heat transfer coefficients were determined through a combination of experimental measurements and numerical simulations. This study investigated the effects of pressure, cooling water mass flow rate, CO2 mass flow rate, CO2 inlet temperature, flow direction, properties variation and buoyancy on convection heat transfer in small tube. The results show that the local heat transfer coefficients vary significantly along the tube when the CO2 bulk temperatures are in the near-critical region. The increase of specific heat and turbulence kinetic energy due to the density variation leads to the increase of the local heat transfer coefficients for upward flow. The buoyancy effect induced by density variation leads to a different variation trend of the local heat transfer coefficients along the tube for upward and downward flows. The numerical simulations were conducted using several k–ε turbulence models including the RNG k–ε model with a two-layer near wall treatment and three low-Reynolds number eddy viscosity turbulence models. The simulations using the low-Reynolds number k–ε model due to Yang–Shih has been found to be able to reproduce the general features exhibited in the experiments, although with a relatively large overestimation of measured wall temperatures. A better understanding of the mechanism of properties variation and buoyancy effects on convection heat transfer of CO2 at super-critical pressures in a vertical small tube during cooling has been developed based on the information generated by the simulation on the detailed flow and turbulence fields.  相似文献   

13.
A numerical study of a three‐dimensional, turbulent, forced convection flow around a hot cubic block exposed to cross‐flow and an impinging jet is carried out. The standard kε turbulence model is used to study the effects of Reynolds number ratio on the flow and heat transfer. For each value of the Reynolds number of the jet, the Reynolds number ratio is equal to 1, 1.5, and 2. The influence of the channel height and the jet axis location are also examined. The governing equations are solved by using Ansys Fluent software 14.5. Results show that the heat transfer increases with the increase in the Reynolds number ratio. At the top of the cube, better cooling occurs with an increase in the speed of the impinging jet. A reduction in the height of the channel and the displacement of the axis of the jet toward the channel inlet improve the heat transfer. Our simulations are compared with experimental data found in the literature, using different turbulence models.  相似文献   

14.
Based on the simplified format of the Reynolds stress equations,a fire-new rotational-modification method for the anisotropic turbulence model has been presented.A three-dimensional Navier-Stokes code with this new rotational modified k-ω turbulence models(β=0.1 and β=1) and the standard k-ω turbulence model have been used for the prediction of flow and heat transfer characteristics in a rotating smooth square channel.The Reynolds number Re based on the inlet velocity of the cooling air and hydraulic diameter is 6000.The rotating speed are 300,600,900,1200rpm respectively.The calculations results of using three turbulence models have been compared with the experimental data.The research results show that(1) the rotational modification coefficient Rf13 used in the new anisotropic k-ω model would increased/decreased the predictions of heat transfer on the trailing surface/leading surface compared to the standard k-ω model.And this tendency would be increased with the increased β.(2) The simulation performance of the standard k-ω model was well on the leading surface.However,on the trailing surface it under-predicted the heat transfer at high rotating speed.(3) The calculation results of the new anisotropic k-ω model with β=0.1 proposed by the present paper agreed well with experimental data,both on the leading and trailing surfaces.Besides,compared to 1,0.1 is a more appropriate magnitude of β at conditions in the present paper.  相似文献   

15.
A numerical investigation is conducted for the case of turbulent flow in the unobstructed space between a pair of centrally clamped coaxial disks corotating in a fixed axisymmetric enclosure. The finite difference procedure of Chang et al. (J. Heat Transfer111, 625–632 (1989)) is extended to include a standard two-equation (κ-ε) model of turbulence in the core of the flow. A van Driest relation, that accounts for the effects of streamline curvature and wall shear on the energy-containing length scales, is used in conjunction with Prandtl's mixing length hypothesis to model the near wall flow. The set of equations is solved assuming a constant property, circumferentially symmetric, statistically stationary flow. This approach predicts mean velocity and heat transfer results that are in good agreement with timeaveraged experimental data. The predictions reveal a flow that, in non-dimensional variables, tends to a limiting asymptotic state at high Reynolds numbers. In the absence of blowing a symmetrical pair of crossstream eddies appear near the enclosure wall the rotation of which increases with increasing disk rotational speed. High rotational speeds, in excess of 2400 rpm in the configuration studied, and small disk separations induce large values of shear and temperature (due to viscous dissipation) in the vicinity of the enclosure wall. The flow and its heat transfer characteristics can be drastically altered by the combined effects of radial and axial blowing. Specifically, it is shown that axial blowing significantly reduces the shear and heat transfer at the curved enclosure wall.  相似文献   

16.
A new modified low-Reynolds-number k-ε turbulence [Chang, Hsieh and Chen (CHC)] model, which possesses the proper near-wall limiting behaviors and is free of the singular defect occurring near the reattachment point when applied to separated flows, is examined for use in wall heat transfer problems in flow with pipe expansion geometry. Another eight low-Reynolds-number k-ε models, found in open literature, are also examined in this study. Attention is specifically focused on the flow region surrounding the reattachment point. Comparative results show that only the CHC model and the model developed by Abe et al. [Abe, Kondoh and Nagano (AKN model)] can yield satisfactory distributions of the Nusselt number along the wall. However, the CHC model adopted the same model constants as conventionally used for the standard k-ε model. Thus, the CHC model is more universal than the AKN model.  相似文献   

17.
As is well known, the heat transfer coefficient of a solar air heater duct can be increased by providing artificial roughness on the heated wall (i.e. the absorber plate). Experiments were performed to collect heat transfer and friction data for forced convection flow of air in solar air heater rectangular duct with one broad wall roughened by wedge shaped transverse integral ribs. The experiment encompassed the Reynolds number range from 3000 to 18000; relative roughness height 0.015 to 0.033; the relative roughness pitch 60.17φ−1.0264<p/e<12.12; and rib wedge angle (φ) of 8, 10, 12 and 15°. The effect of parameters on the heat transfer coefficient and friction factor are compared with the result of smooth duct under similar flow conditions. Statistical correlations for the Nusselt number and friction factor have been developed in terms of geometrical parameters of the roughness elements and the flow Reynolds number.  相似文献   

18.
In this paper, roughness was modelled as a pattern of parallelepipedic elements of height k periodically distributed on the plane walls of a microchannel of height H and of infinite span. Two different approaches were used to predict the influence of roughness on heat transfer in laminar flows through this microchannel. Three-dimensional numerical simulations were conducted in a computational domain based on the wavelength λ. A one-dimensional model (RLM model) was also developed on the basis of a discrete-element approach and the volume averaging technique. The numerical simulations and the rough-layer model agree to show that the Poiseuille number Po and the Nusselt number Nu increase with the relative roughness. The RLM model shows that the roughness effect may be interpreted by using effective roughness heights keff and keffθ for predicting Po and Nu respectively. keff and keffθ depend on two dimensionless local parameters: the porosity of the rough-layer and the roughness height normalized with the distance between the rough elements. The present results show that roughness increases the friction factor more than the heat transfer coefficient (performance evaluation criteria < 1), for a relative roughness height expected in the fabrication of microchannels (k/(H/2) < 0.46) or k/Dh < 0.11).  相似文献   

19.
Local and average heat transfer by forced convection from a circular cylinder is studied for Reynolds number from 2 × 103 to 9 × 104 and Prandtl number from 0.7 to 176. For subcritical flow, the local heat transfer measurement indicates three regions of flow around the cylinder: laminar boundary layer region, reattachment of shear layer region and periodic vortex flow region. The average heat transfer in each region is calculated and correlated with the Reynolds number and the Prandtl number. The Nusselt number in each region strongly depends on the Reynolds number and the Prandtl number with different power indices. An empirical correlation for predicting the overall heat transfer from the cylinder is developed from the contributions of heat transfer in these three regions.  相似文献   

20.
The numerical results of the heat transfer and flow characteristics in the hard disk drive tester are presented. The testing of the hard disk drive with keeping drives within the normal and high temperatures in the tester has been introduced as one of the manufacturing processes of the hard disk drive. The cooling air entering the tester is induced by the 10 axial fans into the tester and is impinged the hard disk drives and then discharged to the atmosphere. The kε standard turbulent model is applied to analyze the model. The results obtained from the model are verified by comparing with the measured data. Reasonable agreement is obtained from the comparison between the results obtained from the model and those from the experiment. The numerical results show that the flow and temperature distribution of cooling air are not uniformed. Which none-uniform temperature and accumulated heat are significantly factors to the failure of the hard disk drives. The results of this study are of technology importance for the efficient design and/or approved hard disk drive tester to decrease hard disk drive failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号