首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
采用高频感应加热的方式,在Ar气保护条件下,用Ag-Cu-Ti钎料实现了TiAl基合金与40Cr钢的钎焊连接;采用扫描电镜、电子探针、X射线衍射分析等手段对断口、界面、生成相进行了分析,并且测试了接头的抗拉强度。结果表明,在界面上有Ti(CuAl)2、Ag[s,s]、TiC等反应相生成,典型接头界面结构为TiAl/Ti(CuAl)2 Ag[s,s]/Ag[s,s]/TiC/40Cr);断裂位置及接头的抗拉强度随保温时间而变化;当钎焊连接温度为1143K,保温时间0.9ks时接头抗拉强度值最高,达到298MPa,断裂主要发生在Ti(CuAl)2层内部。  相似文献   

2.
以Ag-Cu-Ni-Li为钎料对TiAl与40Cr进行了高频感应钎焊,研究了TiAl/40Cr钎焊接头的界面组织和力学性能.采用扫描电镜、电子探针、X射线能谱分析仪等分析了界面组织及生成相,测试了接头的抗拉强度及界面生成相的显微硬度.结果表明:钎料与2种母材发生界面生反应成Al3Ti、Ag[s,s]、Ti(CuAl) 2、Ti2Ni和TiC等多种反应相,接头界面结构Al/A为Til3Ti/Al3Ti十Ag[s,s]/Ti(CuAl)2 Ti2Ni Ag[s,s]/TiC/40Cr.在实验所选的工艺参数范围内,当连接温度θ=850℃,保温时间t=180 s时,接头的抗拉强度达到265 MPa.  相似文献   

3.
李玉龙  何鹏  冯吉才 《焊接学报》2006,27(10):81-84
在Ar气保护条件下,采用Ag-Cu-Ni-Li钎料实现了TiAl基合金与42CrMo钢的感应钎焊.结果表明,在界面上有Ti3Al,AlCuTi,AlCu2Ti,Ag基固溶体、Ag-Cu共晶组织以及TiC等反应相生成.钎焊温度1 000 ℃、保温30 s,接头界面组织主要为Al-Cu-Ti的三元金属间化合物,拉伸测试中断裂发生在金属间化合物的内部;当钎焊温度890 ℃,保温时间30 s时,接头室温抗拉强度、高温(400 ℃)抗拉强度分别达到309 MPa,286 MPa,拉伸测试中裂纹源于焊缝中金属间化合物粒子与Ag基体固溶体相界处,扩展到两侧母材界面的脆性相处发生断裂.  相似文献   

4.
在Ar气保护条件下,采用Ag—Cu—Ni-Li钎料实现了TiAl基合金与42CrMo钢的感应钎焊。结果表明,在界面上有Ti3Al,AlCuTi,AlCu2 Ti,Ag基固溶体、Ag—Cu共晶组织以及TiC等反应相生成。钎焊温度1000℃、保温30s,接头界面组织主要为Al—Cu—Ti的三元金属间化合物,拉伸测试中断裂发生在金属间化合物的内部;当钎焊温度890℃,保温时间30s时,接头室温抗拉强度、高温(400℃)抗拉强度分别达到309MPa,286MPa,拉伸测试中裂纹源于焊缝中金属间化合物粒子与Ag基体固溶体相界处,扩展到两侧母材界面的脆性相处发生断裂。  相似文献   

5.
在钎焊时间10 min,钎焊温度820~900℃的条件下,采用AgCu钎料对C/C复合材料和TC4进行了钎焊试验.利用扫描电镜、X射线衍射分析仪、EDS能谱分析仪对接头的界面组织及断口形貌进行了研究.结果表明,C/C复合材料与TC4连接接头的界面结构为C/C复合材料/TiC C/TiCu/Ag(s.s) Cu(s.s) Ti3Cu4/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu Ti(s.s)/TC4.由压剪试验测得的接头抗剪强度可知,在钎焊温度850 ℃,保温时间10 min的钎焊条件下,接头获得的最高抗剪强度达到38 MPa.接头的断口分析表明,接头的断裂位置与被连接处碳纤维方向和钎焊温度有关.当碳纤维轴平行于连接面时,断裂发生在复合材料中.当碳纤维轴垂直于连接面时,若钎焊温度较低,断裂发生在C/C复合材料/钎料界面处;若钎焊温度较高,断裂主要发生在C/C复合材料/钎料界面和钎料/TC4界面处.  相似文献   

6.
采用AgCuTi活性钎料实现了Al_2O_3陶瓷与TiAl合金的钎焊连接,研究了钎焊接头的界面结构及其形成机制,并且分析了不同钎焊参数对接头界面组织和接头力学性能的影响规律。结果表明:Al_2O_3陶瓷与TiAl合金钎焊接头的典型界面组织为:Al_2O_3/Ti_3(Cu,Al)_3O/Ag(s.s)+Cu(s.s)+AlCu_2Ti/AlCu_2Ti+AlCuTi/TiAl。钎焊过程中,TiAl基体向液态钎料中的溶解量决定了钎焊接头界面组织的形成及其演化。随着钎焊温度的升高和保温时间的延长,Al_2O_3陶瓷侧的Ti_3(Cu,Al)_3O反应层增厚,钎缝中弥散分布的团块状AlCu_2Ti化合物逐渐聚集长大。陶瓷侧界面反应层的厚度和钎缝中AlCu_2Ti化合物的形态及分布共同决定着接头的抗剪强度。当钎焊温度为880℃,保温10 min时,接头的抗剪强度最大,达到94 MPa,此时接头的断裂形式呈现沿Al_2O_3陶瓷基体和界面反应层的复合断裂模式。  相似文献   

7.
采用Ag-Cu钎料与Ti-Zr-Ni-Cu钎料,对TiAl与Ti合金进行了真空钎焊试验,主要研究了采用两种钎料时的界面反应以及钎焊温度对界面组织及性能的影响.研究发现,采用Ag-Cu钎料时界面结构为:Ti/Ti(Cu,Al)2/TiCux Ag(s,s)/Ag(s,s)/Ti(Cu,Al)2/TiAl,当钎焊温度T=1 223 K,保温时间t=10 min时接头的剪切强度达到223.3 MPa;采用Ti-Zr-Ni-Cu钎料时在界面出现了Ti2Ni,Ti(Cu,Al)2等多种金属间化合物,当钎焊温度T=1 123 K,保温时间t=10 min时接头的剪切强度达到139.97 MPa.  相似文献   

8.
Si3N4/AgCu/TiAl钎焊接头界面结构及性能   总被引:2,自引:0,他引:2  
采用AgCu非活性钎料实现了Si3N4陶瓷与TiAl基合金的钎焊,确定接头的典型界面组织结构为:TiAl/Ti3Al+Ti(s,s)/AlCuTi/Ag(s,s)+AlCu2Ti/Ti5Si3+TiN/Si3N4陶瓷。钎焊过程中,活性元素Ti从TiAl母材溶解到钎料中与Si3N4陶瓷发生反应润湿,实现了TiAl与Si3N4陶瓷的连接。随着钎焊温度的升高及保温时间的延长,靠近Si3N4陶瓷的TiN反应层厚度增加,Ag基固溶体中弥散分布的AlCu2Ti化合物聚集长大成块状,导致接头性能下降。当钎焊温度T=860℃,保温时间为5min时接头抗剪强度达到最大值124.6MPa。基于反应热力学及动力学计算TiN层反应激活能Q约为528.7kJ/mol,860℃时该层的成长系数KP=2.7×10-7m/s1/2。  相似文献   

9.
在钎焊时间3~30min,钎焊温度860-1000℃的条件下,采用AgCuTi钎料对C/C复合材料和TC4合金进行了钎焊试验。利用扫描电镜及EDS能谱分析的方法对接头的界面组织及断口形貌进行了研究。结果表明,接头界面结构为C/C复合材料/TiC+C/TiCu+TiC/Ag(s.s)+Ti3Cu4+TiCu/Ti3Cu4/TiCu/Ti2Cu/Ti2Cu+Ti(s.s)/TC4。由压剪试验测得的接头抗剪强度结果可知,在钎焊温度910℃,保温时间10min的条件下,接头获得的最高抗剪强度为25MPa。接头的断口分析结果表明,接头断裂的位置与被连接界面的碳纤维方向有关,当碳纤维轴平行于连接面时,断裂发生在复合材料中;当碳纤维轴垂直于连接面时,断裂主要发生在复合材料与钎料的界面处。  相似文献   

10.
采用Ti/Ag-Cu/Cu中间层实现了Si_3N_4陶瓷与TiAl合金的钎焊连接,获得了良好的接头.利用SEM,EDS等微观手段,分析了接头界面结构和元素分布情况.结果表明,Si_3N_4陶瓷/Ti/Ag-Cu/Cu/TiAl典型界面微观结构可能为:Si_3N_4/TiN/Ti-Si/Cu-Ti+Ag(s,s)+Cu(s,s)/AlCuTi/TiAl.在连接温度1 133 K、保温时间30 min、接头压力0.040 MPa时,接头四点弯曲强度达到最大值170 MPa.  相似文献   

11.
In this study, TiB2 cermet and TiAl-based alloy are vacuum brazed successfully by using Ag-Cu-Ti filler metal.The microstructural analyses indicate that two reaction products, Ti ( Cu, Al ) 2 and Ag bused solid solution ( Ag ( s. s ) ) , are present in the brazing seam, and the iuterface structure of the brazed joint is TiB2/TiB2 Ag ( s. s ) /Ag ( s. s ) Ti ( Cu,Al)2/Ti( Cu, Al)2/TiAl. The experimental results show that the shear strength of the brazed TiB2/TiAl joints decreases us thebrazing time increases at a definite brazing temperature. When the joint is brazed at 1 223 K for 5 min, a joint strength up to 173 MPa is achieved.  相似文献   

12.
以Ti为中间层实现了TiAl与Ni基合金的接触反应钎焊。采用扫描电镜和电子探针等手段对钎焊接头的界面结构及生成相进行分析,并对接头剪切强度进行测试。结果表明:当钎焊温度为960℃时,钎缝主要由Tiss和Ti2Ni组成;当钎焊温度从960℃升高到1000℃时,钎缝中生成Ti-Al及Al-Ni-Ti化合物,典型界面结构为:GH99/(Ni,Cr)ss/Ti2Ni+AlNi2Ti+TiNi/Ti3Al+Al3NiTi2/Ti3Al+Al3NiTi2/TiAl;钎焊温度继续升高,Ti3Al和Al3NiTi2变得粗大,导致接头性能下降。当钎焊温度为1000℃,保温10min时,接头剪切强度达到最大值233MPa。随钎焊温度的升高,钎缝厚度先增加后减小。  相似文献   

13.
An amorphous Ti-37.5Zr-15Cu-15Ni (wt.%) ribbon fabricated by vacuum arc remelting and rapid solidification was used as filler metal to vacuum braze TiAl alloy (Ti-45Al-2Mn-2Nb-1B (at.%)). The effects of brazing temperature and time on the microstructure and strength of the joints were investigated in details. The typical brazed joint major consisted of three zones and the brazed joints mainly consisted of α2-Ti3Al phase, α-Ti phase and (Ti, Zr)2(Cu, Ni) phase. When the brazing temperature varied from 910 °C to 1010 °C for 30 min, the tensile strength of the joint first increased and then decreased. With increasing the brazing time, the tensile strength of the joint increased. The maximum room temperature tensile strength was 468 MPa when the specimen was brazed at 930 °C for 60 min. All the fracture surfaces assumed typical brittle cleavage fracture characteristic. The fracture path varied with the brazing parameter and cracks preferred to initiate at (Ti, Zr)2(Cu, Ni) phase and propagation path were mainly determined by the content and distribution of α-Ti phase and (Ti, Zr)2(Cu, Ni) phase.  相似文献   

14.
采用Ni-34Ti共晶钎料实现了TiAl合金的钎焊连接,分析了TiAl合金钎焊接头的界面结构,重点研究了钎焊温度对接头组织及性能的影响规律.结果表明,Ni-34Ti共晶钎料主要由TiNi相和TiNi3相组成,钎料熔点为1 120 ℃.不同钎焊温度下获得的接头界面组织均呈现对称特征,无气孔和裂纹等缺陷,接头中主要形成了TiNiAl2,B2,TiNiAl和TiNi2Al四种物相.Al元素在钎缝中的快速扩散,促进了钎缝中Ti-Ni-Al三元化合物的形成.钎焊温度为1 180 ℃保温10 min条件下,TiAl合金接头获得了最大的室温抗剪强度87 MPa.剪切过程中,裂纹容易在富含TiNi2Al相的区域产生和扩展,大量脆性TiNi2Al相的存在对接头的性能是有害的.  相似文献   

15.
TiC增强Cf/SiC复合材料与钛合金钎焊接头工艺分析   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Ag-Cu-Ti-(Ti+C)混合粉末作钎料,在适当的工艺参数下真空钎焊Cf/SiC复合材料与钛合金,利用SEM,EDS和XRD分析接头微观组织结构,利用剪切试验检测接头力学性能.结果表明,钎焊后钎料中的钛与Cf/SiC复合材料发生反应,接头中主要包括TiC,Ti3SiC2,Ti5Si3,Ag,TiCu,Ti3Cu4和Ti2Cu等反应产物,形成石墨与钛原位合成TiC强化的致密复合连接层.TiC的形成缓解了接头的残余热应力,并且提高了接头的高温性能.接头室温、500℃和800℃高温抗剪强度分别达到145,70,39 MPa,明显高于Cf/SiC/Ag-Cu-Ti/TC4钎焊接头.  相似文献   

16.
卞红  田骁  冯吉才  高峰  胡胜鹏 《焊接学报》2018,39(5):33-36,68
采用TiZrNiCu非晶钎料实现了TC4和Ti60异种钛合金的真空钎焊连接,利用扫描电子显微镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等分析手段研究了钎焊工艺参数对接头界面组织结构及力学性能的影响. 结果表明,TC4/TiZrNiCu/Ti60钎焊接头的典型界面结构为:TC4/α-Ti+β-Ti+(Ti,Zr)2(Ni,Cu)/Ti60. 随着钎焊温度升高或保温时间延长,片层状α+β相逐渐填充整条钎缝,(Ti,Zr)2(Ni,Cu)相含量减少且分布更加均匀. 接头室温抗拉强度随钎焊温度或保温时间的增加均先增大后减小,在990 ℃/10 min钎焊条件下所获接头抗拉强度达到最大为535.3 MPa. 断口分析结果表明,断裂位于钎缝中,断裂方式为脆性断裂.  相似文献   

17.
AlSiCu_(10-10) flame brazing 6063 aluminum alloy was rearched,and microstructure and mechanical properties of brazed joints were tested in the experiments. The interfacial microstructures and brazing phases of brazed joints were analyzed by scanning electron microscopy( SEM) and X-ray energy dispersive spectroscopy( EDS). The strength of brazed joints was aquired by tensile test. The results show that the AlCu_2 and Mg_2 Si phases were formed in the brazing seam,the former is the brittle phase,the Mg_2 Si phases is considered to be the strengthening phase of the aluminum alloy,which can reduce the brittleness caused by AlCu_2. The average tensile strength of brazed butt joint was 115 MPa,and the average shear strength of brazed joint was 26 MPa. Finally,the fracture form and fracture morphology of the brazed joint were analyzed.  相似文献   

18.
An amorphous Ti41.7–Zr26.7–Cu14.7–Ni13.8–Co3.1 (wt%) ribbon fabricated by melt spinning was used as filler to vacuum braze Ti–48Al–2Nb–2Cr (at%) intermetallics. The influences of brazing temperature and time on the microstructure and strength of the joints were investigated. It is found that intermetallic phases of Ti3Al and γ-Ti2Cu/Ti2Ni form in the brazed joints. The tensile strength of the joint first increases and then decreases with the increase of the brazing temperature in the range of 900–1050 °C and the brazing time varying from 3 to 15 min. The maximum tensile strength at room temperature is 316 MPa when the joint is brazed at 950 °C for 5 min. Cleavage facets are widely observed on all of the fracture surfaces of the brazed joints. The fracture path varies with the brazing condition and cracks prefer to initiate at locations with relatively high content of γ-Ti2Cu/Ti2Ni phases and propagate through them.  相似文献   

19.
采用Ag-Cu-Ti钎料对常压烧结的SiC陶瓷与TiAl金属间化合物进行了真空钎焊,并对接头的微观组织和室温强度进行了研究。结果表明,利用Ag-Cu-Ti钎料可以实现SiC与TiAl的连接;接头界面具有明显的层状结构,即由Ti-Cu-Si合金层、富Cu相与富Ag相的双相层和Ti-Al-Cu合金层组成;在1173K和10min的钎焊条件下,接头室温剪切强度达到173MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号