首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
As a step toward understanding the mechanism by which targets are selected for smooth-pursuit eye movements, we examined the behavior of the pursuit system when monkeys were presented with two discrete moving visual targets. Two rhesus monkeys were trained to select a small moving target identified by its color in the presence of a moving distractor of another color. Smooth-pursuit eye movements were quantified in terms of the latency of the eye movement and the initial eye acceleration profile. We have previously shown that the latency of smooth pursuit, which is normally around 100 ms, can be extended to 150 ms or shortened to 85 ms depending on whether there is a distractor moving in the opposite or same direction, respectively, relative to the direction of the target. We have now measured this effect for a 360 deg range of distractor directions, and distractor speeds of 5-45 deg/s. We have also examined the effect of varying the spatial separation and temporal asynchrony between target and distractor. The results indicate that the effect of the distractor on the latency of pursuit depends on its direction of motion, and its spatial and temporal proximity to the target, but depends very little on the speed of the distractor. Furthermore, under the conditions of these experiments, the direction of the eye movement that is emitted in response to two competing moving stimuli is not a vectorial combination of the stimulus motions, but is solely determined by the direction of the target. The results are consistent with a competitive model for smooth-pursuit target selection and suggest that the competition takes place at a stage of the pursuit pathway that is between visual-motion processing and motor-response preparation.  相似文献   

2.
The amplitude and direction of saccadic eye movements evoked electrically from the dorsomedial frontal cortex (DMFC) of monkeys vary with starting eye position. This observation has been used to argue that the DMFC codes saccadic eye movements in head-centered coordinates. Whether the amplitude and direction of the evoked saccades are also affected by changes in head position has never been demonstrated. Such a result would argue against a head-centered representation, and instead would suggest a representation anchored to another body part. Tests were conducted on rhesus monkeys to determine whether changing the position of the head with respect to the trunk or changing the position of the head with respect to the gravitational axis alters saccadic parameters. The amplitude and direction of saccadic eye movements remained invariant to such manipulations. These findings confirm the claim that the DMFC encodes saccadic eye movements in head-centered coordinates.  相似文献   

3.
Three experiments are reported in which Ss produced rapid wrist rotations to a target while the position of their eyes was being monitored. In Experiment 1, Ss spontaneously executed a saccadic eye movement to the target around the same time as the wrist began to move. Experiment 2 revealed that wrist-rotation accuracy suffered if Ss were not allowed to move their eyes to the target, even when visual feedback about the moving wrist was unavailable. In Experiment 3, wrist rotations were equally accurate when Ss produced either a saccadic or a smooth-pursuit eye movement to the target. However, differences were observed in the initial-impulse and error-correction phases of the wrist rotations, depending on the type of eye movement involved. The results suggest that aimed limb movements use information from the oculomotor system about both the static position of the eyes and the dynamic characteristics of eye movements. Furthermore, the information that governs the initial impulse is different from that which guides final error corrections. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
It has been found that the smooth pursuit eye movements (SPEM) are elicited by not only visual stimuli but also non-visual information such as the subject's fingertip movement and a moving sound source. We have already reported the quantitative analysis of SPEM which were induced by somatosensory and acoustic information. In the previous study, we used a sinusoidal waveform that could be highly predictable. Since it is wellknown that predictive control has an important role in the normal SPEM, we expect the predictive control to function in non-visually induced SPEM (NVSPEM). We quantitatively analyzed NVSPEM and normal SPEM evoked by pseudorandom target motion in ten human subjects who had no ocular, oculomotor or vestibular disorders. NVSPEM were induced by the following two non-visual targets: 1, subjects' fingertip motion as a somatosensory target ("Somato"), 2, a small loudspeaker (3-cm diameter.) generating white noise with an intensity of about 60 dB (A) as an acoustic target ("Acoustic"). A servo-controlled swing arm of 50cm was used to drive the subject's fingertip and the acoustic target of the small loudspeaker. The horizontal motion of the swing arm was controlled by a personal computer. The pseudorandom target motion was generated by mixing four sinusoids (0.1, 0.2, 0.4, 0.8 Hz) of which the phases were randomly selected and the peak velocities were equally set at 19 deg/s. The mean peak velocity of the target was 26.2 deg/s and the amplitude was limited within 15 deg. Horizontal eye movements were recorded by DC electro-oculography and on an analogue datatape. The experiment was performed for 30 s in complete darkness so that the subjects' fingertip and loudspeaker as such remain invisible to the subject. Signals from the data recorder were smoothed by a low pass analogue filter of 20Hz, after digitization with a sampling frequency of 200 Hz and precision of 12 bits, and stored on a computer. The slow and quick eye movement components, both of which were present in each class of horizontal eye movement investigated, were identified and separated by a computer. Then we developed a method of automatic quantitative analysis of ocular tracking eye movement. Gain and phase values for the smooth pursuit eye movements were obtained in each condition. In the lower frequency area, the gain elicited by the pseudorandom stimulation was lower than the smooth pursuit gain for sinusoidal (predictable) stimulation in all conditions. In the highest frequency, gain values did not differ significantly among the three. For the sinusoidal stimulation, the phase of the smooth component of "Visual" always had a lag and that of "Somato" and "Acoustic" had a lead in lower frequencies. All conditions had a phase shift, decreasing with increasing frequency. For the pseudorandom stimulation the phase of the SPEM had a lead only in the lowest frequency (0.1 Hz). On the other hand, in the NVSPEM the phases of the three lower frequencies had a lead which had a tendency of a larger phase lead with decreasingly frequency. In the highest frequency (0.8 Hz), we could see a short phase lag. These findings support the idea that SPEM and NVSPEM have a mutual or similar physiologic system and overlap part of the anatomical pathway.  相似文献   

5.
The ability of human infants < or = 4 months of age to pursue objects smoothly with their eyes was assessed by presenting small target spots moving with hold-ramp-hold trajectories at ramp velocities of 4-32 deg/sec. Infants as young as 1 month old followed such target motions with a combination of smooth-pursuit and saccadic eye movements interrupted occasionally by periods when the eyes remained stationary. The slowest targets produced variable performance, but targets moving 8-32 deg/sec produced consistent pursuit behavior, even in the youngest infants. By the fourth month, eye-movement latency decreased and smooth-pursuit gain and the percentage of smooth pursuit per trial increased for all target velocities, though these measures had not yet reached adult levels.  相似文献   

6.
Age-related differences in the trajectories of saccadic eye movements were examined. Younger and older adult subjects produced saccades to predictable target locations. Detailed features of the movements were examined such as the time of peak acceleration and the variability in the magnitude of the peak velocity. These and other measures reveal important details of the force pulses underlying the eye movements and the mental mechanisms that control them. Although minor differences were apparent between the eye movements of younger and older adults, the general patterns were the same across age groups. These results suggest that fundamental details of the brain mechanisms involved in the control of movement are the same for younger and older adults.  相似文献   

7.
Aging and movement: Variability of force pulses for saccadic eye movements.   总被引:1,自引:0,他引:1  
Age-related differences in the trajectories of saccadic eye movements were examined. Younger and older adult subjects produced saccades to predictable target locations. Detailed features of the movements were examined such as the time of peak acceleration and the variability in the magnitude of the peak velocity. These and other measures reveal important details of the force pulses underlying the eye movements and the mental mechanisms that control them. Although minor differences were apparent between the eye movements of younger and older adults, the general patterns were the same across age groups. These results suggest that fundamental details of the brain mechanisms involved in the control of movement are the same for younger and older adults. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Previous investigations have challenged the generality of the claim that perceived motion in an effective stimulus for smooth pursuit eye movements. The experiments extend the scope of these investigations. Three experiments test the hypothesis that perceived motion can serve as the stimulus for pursuit when the eye movement does not generate constraining retinal error information. Observers viewed retinally stabilized displays that elicited the perception that a stationary target was moving or that a moving target was moving faster than it was actually moving. The results failed to confirm the hypothesis. Relevant literature is reviewed. We conclude that perceived movement can act as a stimulus for pursuit only when the "perceptual target" has no retinal counterpart.  相似文献   

9.
Shared motor error for multiple eye movements   总被引:1,自引:0,他引:1  
Most natural actions are accomplished with a seamless combination of individual movements. Such coordination poses a problem: How does the motor system orchestrate multiple movements to produce a single goal-directed action? The results from current experiments suggest one possible solution. Oculomotor neurons in the superior colliculus of a primate responded to mismatches between eye and target positions, even when the animal made two different types of eye movements. This neuronal activity therefore does not appear to convey a command for a specific type of eye movement but instead encodes an error signal that could be used by multiple movements. The use of shared inputs is one possible strategy for ensuring that different movements share a common goal.  相似文献   

10.
When subjects track with the eyes an arm-attached target, eye latency is shorter than when tracking an external target. This improved synchrony could result from either a common command addressed to the two systems or from an influence of the arm command on eye motion initiation. According to the first hypothesis, the eyes should start moving long before the arm, because of the difference in dynamics. We recorded arm and eye motion together with biceps muscle activity in controls and a deafferented subject. Data support the second hypothesis. Moreover, the deafferented subject showed a lesser correlation between arm and eye motions than controls, suggesting a role for arm proprioception in the calibration of the temporal relationship between arm and eye movements.  相似文献   

11.
1. Our goal was to assess whether visual motion signals related to changes in image velocity contribute to pursuit eye movements. We recorded the smooth eye movements evoked by ramp target motion at constant speed. In two different kinds of stimuli, the onset of target motion provided either an abrupt, step change in target velocity or a smooth target acceleration that lasted 125 ms followed by prolonged target motion at constant velocity. We measured the eye acceleration in the first 100 ms of pursuit. Because of the 100-ms latency from the onset of visual stimuli to the onset of smooth eye movement, the eye acceleration in this 100-ms interval provides an estimate of the open-loop response of the visuomotor pathways that drive pursuit. 2. For steps of target velocity, eye acceleration in the first 100 ms of pursuit depended on the "motion onset delay," defined as the interval between the appearance of the target and the onset of motion. If the motion onset delay was > 100 ms, then the initial eye movement consisted of separable early and late phases of eye acceleration. The early phase dominated eye acceleration in the interval from 0 to 40 ms after pursuit onset and was relatively insensitive to image speed. The late phase dominated eye acceleration in the interval 40-100 ms after the onset of pursuit and had an amplitude that was proportional to image speed. If there was no delay between the appearance of the target and the onset of its motion, then the early component was not seen, and eye acceleration was related to target speed throughout the first 100 ms of pursuit. 3. For step changes of target velocity, the relationship between eye acceleration in the first 40 ms of pursuit and target velocity saturated at target speeds > 10 degrees /s. In contrast, the relationship was nearly linear when eye acceleration was measured in the interval 40-100 ms after the onset of pursuit. We suggest that the first 40 ms of pursuit are driven by a transient visual motion input that is related to the onset of target motion (motion onset transient component) and that the next 60 ms are driven by a sustained visual motion input (image velocity component). 4. When the target accelerated smoothly for 125 ms before moving at constant speed, the initiation of pursuit resembled that evoked by steps of target velocity. However, the latency of pursuit was consistently longer for smooth target accelerations than for steps of target velocity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Conducted simultaneous recording of smooth-pursuit eye movements by EOG and infrared reflection techniques with 5 psychiatric patients (1 with psychotic depression, 1 with organic brain syndrome, and 3 with schizophrenia) and 5 normal controls. Results show good correspondence between the 2 methods. The parameter of pursuit arrests, previously used to quantify smooth-pursuit performance, was not well correlated in the 2 methods. The natural logarithm of the signal/noise ratio obtained from harmonic regression of digitized and standardized eye movement data provides a valid quantitative assessment of smooth pursuit and suggests that such scoring of EOG records is effective and generally free of artifacts. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

13.
Monkeys generated disjunctive smooth pursuit eye movements when they tracked visual targets that moved toward or away from them. Eye acceleration was computed during the initial 100 msec of pursuit (the open-loop interval) for various target trajectories. The initial acceleration of either eye was a function of the target's motion with respect to that eye, regardless of whether or not the pursuit was conjugate or disjunctive, or performed with one eye occluded. Eye movements produced by fusional vergence could be separated temporally from eye movements produced by smooth pursuit using step-ramp paradigms. The separation of the two responses demonstrates that the fusional vergence system operates in parallel with the smooth pursuit system, presumably to minimize disparity, but not to generate disjunctive components of smooth pursuit eye movements.  相似文献   

14.
Nitric oxide (NO) production by neurons in the prepositus hypoglossi (PH) nucleus is necessary for the normal performance of eye movements in alert animals. In this study, the mechanism(s) of action of NO in the oculomotor system has been investigated. Spontaneous and vestibularly induced eye movements were recorded in alert cats before and after microinjections in the PH nucleus of drugs affecting the NO-cGMP pathway. The cellular sources and targets of NO were also studied by immunohistochemical detection of neuronal NO synthase (NOS) and NO-sensitive guanylyl cyclase, respectively. Injections of NOS inhibitors produced alterations of eye velocity, but not of eye position, for both spontaneous and vestibularly induced eye movements, suggesting that NO produced by PH neurons is involved in the processing of velocity signals but not in the eye position generation. The effect of neuronal NO is probably exerted on a rich cGMP-producing neuropil dorsal to the nitrergic somas in the PH nucleus. On the other hand, local injections of NO donors or 8-Br-cGMP produced alterations of eye velocity during both spontaneous eye movements and vestibulo-ocular reflex (VOR), as well as changes in eye position generation exclusively during spontaneous eye movements. The target of this additional effect of exogenous NO is probably a well defined group of NO-sensitive cGMP-producing neurons located between the PH and the medial vestibular nuclei. These cells could be involved in the generation of eye position signals during spontaneous eye movements but not during the VOR.  相似文献   

15.
Performance in 2 versions of a computer-animated task was compared. Participants either indicated the time of arrival of a target that rolled off a horizontal surface and fell--hidden from view--onto a landing point (production task) or judged flight time on a rating scale (judgment task). As predicted, performance was significantly better in the production task (Experiment 1), in which imagery of object motion probably replaced reasoning processes. Participants who exhibited eye movements suggesting mental tracking performed particularly well in the production task (Experimenl 2). There was, however, no decrement in performance when participants were asked to fixate the point where the target disappeared. For motion duration estimations, eye movements seem to be only a by-product of mental tracking. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
White (1976) reported that presentation of a masking stimulus during a pursuit eye movement interfered with the perception of a target stimulus that shared the same spatial, rather than retinal, coordinates as the mask. This finding has been interpreted as evidence for the existence of spatiotopic visual persistence. We doubted White's results because they implied a high degree of position constancy during pursuit eye movements, contrary to previous research, and because White did not monitor Ss' eye position during pursuit; if White's Ss did not make continuous pursuit eye movements, it might appear that masking was spatial when in fact it was retinal. We attempted to replicate White's results and found that when eye position was monitored to ensure that subjects made continuous pursuit movements, masking was retinal rather than spatial. Ss' phenomenal impressions also indicated that retinal, rather than spatial, factors underlay performance in this task. The implications of these and other results regarding the existence of spatiotopic visual persistence are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Step-ramp target motion evokes a characteristic sequence of presaccadic smooth eye movement in the direction of the target ramp, catch-up targets to bring eye position close to the position of the moving target, and postsaccadic eye velocities that nearly match target velocity. I have analyzed this sequence of eye movements in monkeys to reveal a strong postsaccadic enhancement of pursuit eye velocity and to document the conditions that lead to that enhancement. Smooth eye velocity was measured in the last 10 ms before and the first 10 ms after the first saccade evoked by step-ramp target motion. Plots of eye velocity as a function of time after the onset of the target ramp revealed that eye velocity at a given time was much higher if measured after versus before the saccade. Postsaccadic enhancement of pursuit was recorded consistently when the target stepped 3 degrees eccentric on the horizontal axis and moved upward, downward, or away from the position of fixation. To determine whether postsaccadic enhancement of pursuit was invoked by smear of the visual scene during a saccade, I recorded the effect of simulated saccades on the presaccadic eye velocity for step-ramp target motion. The 3 degrees simulated saccade, which consisted of motion of a textured background at 150 degrees/s for 20 ms, failed to cause any enhancement of presaccadic eye velocity. By using a strategically selected set of oblique target steps with horizontal ramp target motion, I found clear enhancement for saccades in all directions, even those that were orthogonal to target motion. When the size of the target step was varied by up to 15 degrees along the horizontal meridian, postsaccadic eye velocity did not depend strongly either on the initial target position or on whether the target moved toward or away from the position of fixation. In contrast, earlier studies and data in this paper show that presaccadic eye velocity is much stronger when the target is close to the center of the visual field and when the target moves toward versus away from the position of fixation. I suggest that postsaccadic enhancement of pursuit reflects activation, by saccades, of a switch that regulates the strength of transmission through the visual-motor pathways for pursuit. Targets can cause strong visual motion signals but still evoke low presaccadic eye velocities if they are ineffective at activating the pursuit system.  相似文献   

18.
In macaque ventral premotor cortex, we recorded the activity of neurons that responded to both visual and tactile stimuli. For these bimodal cells, the visual receptive field extended from the tactile receptive field into the adjacent space. Their tactile receptive fields were organized topographically, with the arms represented medially, the face represented in the middle, and the inside of the mouth represented laterally. For many neurons, both the visual and tactile responses were directionally selective, although many neurons also responded to stationary stimuli. In the awake monkeys, for 70% of bimodal neurons with a tactile response on the arm, the visual receptive field moved when the arm was moved. In contrast, for 0% the visual receptive field moved when the eye or head moved. Thus the visual receptive fields of most "arm + visual" cells were anchored to the arm, not to the eye or head. In the anesthetized monkey, the effect of arm position was similar. For 95% of bimodal neurons with a tactile response on the face, the visual receptive field moved as the head was rotated. In contrast, for 15% the visual receptive field moved with the eye and for 0% it moved with the arm. Thus the visual receptive fields of most "face + visual" cells were anchored to the head, not to the eye or arm. To construct a visual receptive field anchored to the arm, it is necessary to integrate the position of the arm, head, and eye. For arm + visual cells, the spontaneous activity, the magnitude of the visual response, and sometimes both were modulated by the position of the arm (37%), the head (75%), and the eye (58%). In contrast, to construct a visual receptive field that is anchored to the head, it is necessary to use the position of the eye, but not of the head or the arm. For face + visual cells, the spontaneous activity and/or response magnitude was modulated by the position of the eyes (88%), but not of the head or the arm (0%). Visual receptive fields anchored to the arm can encode stimulus location in "arm-centered" coordinates, and would be useful for guiding arm movements. Visual receptive fields anchored to the head can likewise encode stimuli in "head-centered" coordinates, useful for guiding head movements. Sixty-three percent of face + visual neurons responded during voluntary movements of the head. We suggest that "body-part-centered" coordinates provide a general solution to a problem of sensory-motor integration: sensory stimuli are located in a coordinate system anchored to a particular body part.  相似文献   

19.
1. To understand roles played by two cortical motor areas, the presupplementary motor area (pre-SMA) and supplementary motor area (SMA), in changing planned movements voluntarily, cellular activity was examined in two monkeys (Macaca fuscata) trained to perform an arm-reaching task in which they were asked to press one of two target buttons (right or left) in three different task modes. 2. In the first mode (visual), monkeys were visually instructed to result and press either a right or left key in response to a forth coming trigger signal. In the second mode (stay), monkeys were required to wait for the trigger signal and press the same target key as pressed in preceding trials. In the third mode (shift), a 50 Hz auditory cue instructed the monkey to shift the target of the future reach from the previous target to the previous nontarget. 3. While the monkeys were performing this task, we recorded 399 task-related cellular activities from the SMA and the pre-SMA. Among them, we found a group of neurons that exhibited activity changes related specifically to shift trials (shift-related cells). The following properties characterized these 112 neurons. First, they exhibited activity changes after the onset of the 50-Hz auditory cue and before the movement execution when the monkeys were required to change the direction of forthcoming movement. Second, they were not active when the monkeys pressed the same key without changing the direction of the movements. Third, they were not active when the monkeys received the 50-Hz auditory cue but failed to change the direction of the movements by mistake. These observations indicate that the activity of shift-related cells is related to the redirection of the forthcoming movements, but not to the auditory instruction itself or to the location of the target key or the direction of the forthcoming movements. 4. Although infrequently, monkeys made errors in the stay trials and changed directions of the reach voluntarily. In that case, a considerably high proportion of shift-related neurons (12 of 19) exhibited significant activity changes long before initiation of the reach movement. These long-lasting activities were not observed during the preparatory period in correct stay trials, but resembled the shift-related activity observed when the target shift was made toward the same direction. Thus these activity changes were considered to be also related to the process of changing the intended movements voluntarily. 5. We found another population of neurons that showed activity modulation when the target shift was induced by the visual instruction in visual trials (visually guided shift-related neurons). These neurons were active when the light-emitting diode (LED) guided the forthcoming reach to the previous nontarget but not to the previous target. Therefore their activity was not a simple visual response to the LED per se. A majority of them also showed shift-related activity in shift trials (19 of 22 in monkey 2). 6. Neurons exhibiting the shift-related activity were distributed differentially among the two areas. In the pre-SMA, 31% of the neurons recorded showed the shift-related activity, whereas in the SMA, only 7% showed such an activity. These results suggest that pre-SMA and SMA play differential roles in updating the motor plans in accordance with current requirements.  相似文献   

20.
The aim of this work was to study the effect of eye position on the activity of neurons of area PO (V6), a cortical region located in the most posterior part of the superior parietal lobule. Experiments were carried out on three awake macaque monkeys. Animals sat in a primate chair in front of a large screen, and fixated a small spot of light projected in different screen locations while the activity of single neurons was extracellularly recorded. Both visual and non-visual neurons were found. About 48% of visual and 32% of non-visual neurons showed eye position-related activity in total darkness, while in approximately 61% of visual response was modulated by eye position in the orbit. Eye position fields and/or gain fields were different from cell to cell, going from large and quite planar fields up to peak-shaped fields localized in more or less restricted regions of the animal's field of view. The spatial distribution of fixation point locations evoking peak activity in the eye position-sensitive population did not show any evident laterality effect, or significant top/bottom asymmetry. Moreover, the cortical distribution of eye position-sensitive neurons was quite uniform all over the cortical region studied, suggesting the absence of segregation for this property within area PO (V6). In the great majority of visual neurons, the receptive field 'moved' with gaze according to eye displacements, remaining at the same retinotopic coordinates, as is usual for visual neurons. In some cases, the receptive field did not move with gaze, remaining anchored to the same spatial location regardless of eye movements ('real-position cells'). A model is proposed suggesting how eye position-sensitive visual neurons might build up real-position cells in local networks within area PO (V6). The presence in area PO (V6) of real-position cells together with a high percentage of eye position-sensitive neurons, most of them visual in nature, suggests that this cortical area is engaged in the spatial encoding of extrapersonal visual space. Since lesions of the superior parietal lobule in humans produce deficits in visual localization of targets as well as in arm-reaching for them, and taking into account that the monkey's area PO (V6) is reported to be connected with the premotor area 6, we suggest that area PO (V6) supplies the premotor cortex with the visuo-spatial information required for the visual control of arm-reaching movements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号