共查询到19条相似文献,搜索用时 78 毫秒
1.
为了提高人脸识别方法对光照、姿态等外部因素的鲁棒性,本文在二维局部保持投影(2DLPP)算法的基础上进行改进,提出的一种双向2DLPP算法。与2DLPP算法不同的是,在求得行方向投影矩阵后,再求列方向的投影矩阵,得到图像的双向特征矩阵,以达到将样本降维的目的。实验结果表明,该方法具有较高的识别率对光照和姿态的变化具有一定的鲁棒性。 相似文献
2.
3.
在进行单训练样本人脸识别时,基于每人多个训练样本的传统人脸识别算法效果通常不太理想。尤其是基于Fisher线性鉴别准则的一些方法,由于类内散布矩阵为零矩阵,根本无法进行识别。针对以上问题进行了分析研究,提出了一种新的样本扩充方法,即:采用位平面图像分解法,将每幅样本图像分解为8幅,进而通过各种合成策略构造多幅样本图像。使用一种更加稳定的二维最大散度差线性鉴别分析方法(2DMSLDA)对上面获得的新样本图像进行特征抽取。在ORL国际标准人脸库上进行的实验表明了所提算法的可行性和有效性。 相似文献
4.
利用模糊集的思想,并融合了二维化、主成分分析以及线性判别分析的优点提出一种基于模糊2DPLA的新方法.该方法将模糊集的概念融入到二维主成分分析和线性判别分析里面,然后在图像矩阵的水平方向和垂直方向分别使用嵌入模糊集的二维线性判别分析和二维主成分分析进行降维,从而使数据具有较好的鲁棒性和自适应性,最后采用基于矩阵的F-范数代替基于向量的2-范数进行分类度量.实验阶段,本文采用Yale Face Database B、ORL和FERET数据库进行测试.实验结果证明该方法具有较好的鲁棒性同时能够获得较高的识别率. 相似文献
5.
将模糊集的隶属度函数矩阵嵌入到二维主成分分析以及二维线性判别分析中,形成了一种基于模糊2DPLA的新方法。该方法首先通过基于模糊的KNN方法求出隶属度函数矩阵;然后将隶属度函数矩阵从图像矩阵的水平方向和垂直方向分别嵌入到二维主成分分析和二维线性判别分析中,从而更好地实现降维;最后采用基于矩阵的F-范数代替传统的基于向量的2一范数进行分类度量。实验阶段,采用Yale Face Database B, ORI和FERET人脸数据库进行了测试和验证。结果证明,该方法具有较好的鲁棒性,并能获得较高的识别率。 相似文献
6.
针对传统的二维线性判别方法提取出的人脸特征系数维数大的问题,提出一个改进的双向二维线性判别分析方法GB2DLDA。双向压缩类内和类间散布矩阵,用压缩后的散布矩阵构成两个Fisher鉴别准则函数,求出两个投影矩阵,然后人脸图像矩阵向投影矩阵投影,提取出特征系数。实验证明在相同识别率下,用此方法提取的特征系数维数明显少于其它二维线性判别分析方法。在选择合适的特征向量的情况下,此方法的识别率要好于其它二维线性判别分析方法。 相似文献
7.
提出了一种改进的模块2DPCA与最大散度差鉴别分析相结合的人脸识别方法。该方法先对原始人脸图像采用改进的模块2DPCA抽取特征,然后对得到的特征图像的子图像块施行最大散度差鉴别分析,得到最终的特征图像。该方法不仅利用了原始图像的局部特征和类别信息,而且完全避免了使用矩阵的奇异值分解。在ORL人脸库上的实验结果验证了该方法的有效性。 相似文献
8.
一种基于2D-DWT和2D-PCA的人脸识别方法 总被引:10,自引:1,他引:10
提出了一种联合图像二维离散小波变换(2D-DWT)和二维主成分分析(2D-PCA)的人脸识别方法。首先通过2D-DWT将当前图像分解成四个子图像,其中一子图像对应原图像的主体部分(低通部分),其余三个子图像则对应图像的细节部分(高通部分)。在此基础上,采用2D-PCA方法分别对每一子图像进行特征提取。此外,文中还提出了一种简单有效的方法对各子图像中所提取的特征进行融合,根据所得到的特征进行人脸识别。同其他基于小波分解的人脸识别方法相比,所提出的方法能更充分地利用人脸图像的有用判别信息,并得到更好的识别结果。 相似文献
9.
10.
提出了一种优化的LMNLDA的人脸识别方法。为了减弱边缘类对投影方向的主导作用,重新定义类间散度矩阵,克服了边缘类对选择最佳投影方向的影响,从而达到最优化。同时,在计算特征值时通过因数分解的方法避免了对矩阵求逆,解决了小样本问题。在人脸数据库YALE、ORL和PIE上进行试验,证明实验结果的有效性。 相似文献
11.
最大散度差鉴别分析及人脸识别 总被引:13,自引:3,他引:13
传统的Fisher线性鉴别分析(LDA)在人脸等高维图像识别应用中不可避免地遇到小样本问题。提出一种基于散度差准则的鉴别分析方法。与LDA方法不同的是,该方法利用样本模式的类间散布与类内散布之差而不是它们的比作为鉴别准则,这样,从根本上避免了类内散布矩阵奇异带来的困难。在ORL人脸数据库和AR人脸数据库上的实验结果验证算法的有效性。 相似文献
12.
13.
14.
提出了模块2DPCA(two-dimensional principal component analysis)的人脸识别方法。模块2DPCA方法先对图像矩阵进行分块,将分块得到的子图像矩阵直接用于构造总体散布矩阵,然后利用总体散布矩阵的特征向量进行图像特征抽取。与基于图像向量的鉴别方法(比如PCA)相比,该方法在特征抽取之前不需要将子图像矩阵转化为图像向量,能快速地降低鉴别特征的维数,可以完全避免使用矩阵的奇异值分解,特征抽取方便;此外,模块2DPCA是2DPCA的推广。在ORL和NUST603人脸库上的试验结果表明,模块2DPCA方法在识别性能上优于PCA,比2DPCA更具有鲁棒性。 相似文献
15.
基于最大散度差鉴别准则的自适应分类算法 总被引:6,自引:0,他引:6
首先证明了,当类内散布矩阵非奇异时,特定参数值c0下最大散度差的最优鉴别方向等同于Fisher最优鉴别方向;其次,给出了最大散度差分类算法的识别率随参数C变化的曲线.该曲线通常为一脉冲曲线.随着参数C的增大,识别率也逐渐增大.当参数C增大到c0时,识别率达到最大值.另外,以往的研究成果表明:当类内散布矩阵奇异时,最大散度差鉴别准则逐步逼近大间距线性投影准则.而且,随着参数C的不断增大,最大散度差分类算法的识别率也单调增大并最终稳定到大间距线性投影分类算法的识别率上.为此,我们提出了基于最大散度差鉴别准则的自适应分类算法.新算法可以根据训练样本的特性(类内散布矩阵是否奇异)自动选择恰当的参数C.在UCI机器学习数据库上的6个数据集以及AR人脸图像数据库上的测试结果表明,自适应最大散度差分类算法具有良好的分类性能. 相似文献
16.
极大边界准则是近年来提出的一种有监督的线性空间降维方法,该方法通过求解一般的特征方程来获得最优的特征向量,不用计算高维矩阵的逆,克服了特征提取中遇到的小样本问题。然而,极大边界准则只选择数据的全局结构,忽略了数据局部几何结构,而在人脸识别中,数据的局部几何结构起着非常重要的作用。针对极大边界准则这一局限性,提出了一种新的极大边界准则算法。该方法选择数据的邻域点最优重构系数用在目标函数中,保留了数据的局部几何结构,从而在低维空间中提取出更好的分类特征。本文还将该方法用在人脸识别中,通过在两个数据库中的实验,证明了其较主成分分析法,线性判别式方法以及平均邻域极大边界准则算法具有更好的识别性能。 相似文献
17.
最大散度差和大间距线性投影与支持向量机 总被引:34,自引:2,他引:34
首先对Fisher鉴别准则作了必要的修正,并基于新的鉴别准则设计了最大散度差分
类器;然后探讨了当参数C趋向无穷大时,最大散度差分类器的极限情况,得到了大间距线
性投影分类器;最后通过分析说明,大间距线性投影分类器实际上是在模式样本线性可分的条
件下,线性支持向量机的一种特殊情况.在ORL和NUST603人脸库上的测试结果表明,最
大散度差分类器和大间距线性投影分类器可以与线性支持向量机、不相关线性鉴别分析相媲
美,优于Foley-Sammon鉴别分析方法. 相似文献
18.
基于模糊最大散度差判别准则的聚类方法 总被引:2,自引:0,他引:2
基于最大散度差判别准则提出了一种模糊最大散度差准则,并根据模糊最大散度差准则提出一种聚类方法(fuzzy maximum scatter difference discriminant criterion based clustering algorithm,简称FMSDC).该方法通过迭代优化方法实现聚类的同时还可以实现特征降维.该方法首先在最大散度差判别准则中引入模糊概念;然后通过具体原则设定模糊最大散度差判别准则中的参数η,从而在一定程度上降低了由参数η引起的敏感性;最后分别根据模糊隶属度μik、最优鉴别矢量ω进行聚类和特征降维.实验结果表明,FMSDC方法不但具有基本的聚类功能,而且具有较好的鲁棒性和较强的特征降维能力. 相似文献
19.
在2维线性鉴别分析(2DLDA)的基础上.介绍了2维异方差鉴别分析(2DHDA),并将其应用于人脸识别.2DHDA算法去除了2DLDA算法样本类内协方差相等的约束,克服了异方差鉴别分析(HDA)算法的"小样本"问题.首先,根据2DLDA准则定义2DHDA准则;然后,将2DHDA准则取对数,用梯度下降法求得最优投影矩阵,人脸图像向最优投影矩阵投影提取人脸图像的特征;最后,最小距离分类器完成人脸识别.基于ORL与Yale混合人脸数据库的实验结果表明了2DHDA应用于人脸识别的有效性. 相似文献