首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) have been used in gas turbine engines for a number of years. The primary mode of failure is attributed to oxidation of the bond coat and growth of the thermally grown oxide (TGO), the alumina scale that forms on the bond coat and to which the ceramic top coat adheres. Once the TGO reaches a critical thickness, the TBC tends to spall and expose the underlying substrate to the hot gases. Erosion is commonly accepted as a secondary failure mechanism, which thins the TBC thus reducing its insulation capability and increasing the TGO growth rate. In severe conditions, erosion can completely remove the TBC over time, again resulting in the exposure of the substrate, typically Ni-based superalloys. Since engine efficiency is related to turbine entry temperature (TET), there is a constant driving force to increase this temperature. With this drive for higher TETs comes corrosion problems for the yttria stabilised zirconia (YSZ) ceramic topcoat. YSZ is susceptible to attack from molten calcium–magnesium–alumina–silicates (CMAS) which degrades the YSZ both chemically and micro-structurally. CMAS has a melting point of around 1240 °C and since it is common in atmospheric dust it is easily deposited onto gas turbine blades. If the CMAS then melts and penetrates into the ceramic, the life of the TBC can be significantly reduced. This paper discusses the various failure mechanisms associated with the erosion, corrosion and erosion–corrosion of EB PVD TBCs. The concept of a dimensionless ratio D/d, where D is the contact footprint diameter and d is the column diameter, as a means of determining the erosion mechanism is introduced and discussed for EB PVD TBCs.  相似文献   

2.
R.G. Wellman  J.R. Nicholls  K. Murphy 《Wear》2009,267(11):1927-5378
Thermal barrier coatings (TBCs) have now been used in gas turbine engines for a number of decades and are now considered to be an accepted technology. As there is a constant drive to increase the turbine entry temperature, in order to increase engine efficiency, the coatings operate in increasingly hostile environments. Thus there is a constant drive to both increase the temperature capabilities of TBCs while at the same time reducing their thermal conductivities. The thermal conductivity of standard 7 wt% yttria stabilized zirconia (7YSZ) electron beam (EB) physical vapour deposited (PVD) TBCs can be reduced in two ways: the first by modification of the microstructure of the TBC and the second by addition of ternary oxides. By modifying the microstructure of the TBC such that there are more fine pores, more photon scattering centres are introduced into the coatings, which reduce the heat transfer by radiation. While ternary oxides will introduce lattice defects into the coating, which increases the phonon scattering, thus reducing the thermal conductivity via lattice vibrations. Unfortunately, both of these methods can have a negative effect on the erosion resistance of EB PVD TBCs.This paper compares the relative erosion rates of ten different EB PVD TBCs tested at 90° impact at room temperature and at high temperature and discusses the results in term of microstructural and temperature effects. It was found that by modifying the coating deposition, such that a low density coating with a highly ‘feathered’ microstructure formed, generally resulted in an increase in the erosion rate at room temperature. When there was a significant change between the room temperature and the high temperature erosion mechanism it was accompanied by a significant decrease in the erosion rate, while additions of dopents was found to significantly increase the erosion rate at room and high temperature. However, all the modified coatings still had a lower erosion rate than a plasma sprayed coatings. So, although, relative to a standard 7YSZ coating, the modified coatings have a lower erosion resistance, they still perform better than PS TBCs and their lower thermal conductivities could make them viable alternatives to 7YSZ for use in gas turbine engines.  相似文献   

3.
采用超音速火焰喷涂粘结层、大气等离子喷涂陶瓷层制备了双层结构的热障涂层。利用扫描电镜对热障涂层进行了微观组织结构分析,主要对涂层的热导率及隔热性能进行了试验研究。结果表明:陶瓷层与粘结层、粘结层与基体的结合良好;陶瓷涂层在1100℃下的热导率为0.99W/(m·K);在测试温度为1100℃、冷气流量为4m3/h的条件下,隔热效果可达到155℃。  相似文献   

4.
As a nondestructive testing technique, terahertz time-domain spectroscopy technology is commonly used to measure the thickness of ceramic coat in thermal barrier coatings (TBCs). However, the invisibility of ceramic/thermally grown oxide (TGO) reflective wave leads to the measurement failure of natural growth TGO whose thickness is below 10 μm in TBCs. To detect and monitor TGO in the emergence stage, a time of flight (TOF) improved TGO thickness measurement method is proposed. A simulative investigation on propagation characteristics of terahertz shows the linear relationship between TGO thickness and phase shift of feature wave. The accurate TOF increment could be acquired from wavelet soft threshold and cross-correlation function with negative effect reduction of environmental noise and system oscillation. Thus, the TGO thickness could be obtained efficiently from the TOF increment of the monitor area with different heating times. The averaged error of 1.61 μm in experimental results demonstrates the highly accurate and robust measurement of the proposed method, making it attractive for condition monitoring and life prediction of TBCs.  相似文献   

5.
《Wear》2006,260(4-5):422-432
In the present investigation NiCrAlY, Ni-20Cr and Ni3Al metallic coatings were deposited on a Ni-based superalloy (18.5Fe-19Cr-0.15Cu-0.5Al-3.05Mo-0.18Mn-0.9Ti-0.18S-0.04C-5.13 (Ta + Cb)-balance Ni). NiCrAlY was used as bond coat in all the cases. Erosion studies were conducted on uncoated as well as plasma spray coated superalloy specimens at room temperature. The erosion experiments were carried out using an air-jet erosion test rig at a velocity of 40 m/s and impingement angles of 30 and 90°. Silica sand particles of size ranging between 150 and 212 μm were used as erodent. The coatings have been characterised by scanning electron microscope (SEM), optical microscope, microhardness tester and X-ray diffractometer (XRD). Scanning electron microscope (SEM), equipped with an energy dispersive X-ray analyser (EDAX) was used to analyse the eroded surfaces. Possible erosion mechanisms are discussed. The phases revealed by XRD of the coatings have shown the formation of solid solutions. Out of the three plasma sprayed coatings, the Ni3Al coating gave the lowest erosion rate regardless of the impact angle, and the Ni-20Cr coating gave the highest erosion rate.  相似文献   

6.
Arjula Suresh  A.P. Harsha  M.K. Ghosh 《Wear》2009,267(9-10):1516-1524
In the present study, the solid particle erosion behaviour of neat PEEK matrix and unidirectional glass fibre (GF) and carbon fibre (CF) reinforced polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) composites has been studied. The erosion experiments have been carried out by using silica sand particles (200 ± 50 μm) as an erodent. Steady state erosion rates of these composites have been evaluated at different impact angles and impact velocities. The neat PEEK exhibited peak erosion rate at 30° impingement angle whereas the composites exhibited a semi-ductile behaviour with peak erosion rate at 60° impact angle. The erosion rate of the glass fibre reinforced composites was higher than that of the carbon fibre reinforced composites. The results show that the fibre orientation has a significant influence on erosion rate only at lower impact angles. The erosion rate of the composites was higher when the particles impact perpendicular to the fibre direction than parallel to the fibres. The morphology of eroded surfaces was observed under scanning electron microscope and damage mechanisms were discussed.  相似文献   

7.
精确提取陶瓷层(Top coat,TC)与热生长氧化层(Thermally grown oxide,TGO)层在太赫兹频段的折射率是进行热障涂层(Thermal barrier coatings,TBCs)太赫兹无损检测研究的重要条件。由于对涂层样品只能采取反射式测量,所以首先比较了反射式与传统透射式测量条件下提取样品太赫兹光学参数及厚度的结果,随后利用反射式太赫兹时域脉冲成像系统提取等离子体喷涂的8YSZ热障涂层(TBCs)中TC层与TGO层的折射率,并依据所提取折射率进一步对TC层的厚度分布进行测量及成像。试验结果表明在材料中衰减较小的有效频段下反射式测量同样可以精确提取样品的折射率以及厚度,反射式测量TC层的平均折射率为5.23,TGO层的折射率为2.91,TGO的主要成分α-Al2O3的折射率为2.85。TBCs样品中TC层的平均厚度为257 μm,从TC层厚度的太赫兹图像中可观察到TC与粘结层(Bond coat,BC)界面的不均匀程度。反射式太赫兹无损检测可精确提取TBCs中TC与TGO的折射率和厚度,这对于TBCs中裂纹和气泡等缺陷的识别以及TGO生长太赫兹检测具有重要意义。  相似文献   

8.
热障涂层皱曲是指在高温循环载荷下陶瓷表层/粘结层界面甚至陶瓷层表面发生的凸起或凹陷现象。综合国内外最新的有关皱曲现象的报道,系统地介绍了电子束物理气相沉积(EB—PVD)热障涂层皱曲行为。综述了皱曲的特点、研究历史和研究进展,从微观机理、研究方法和皱曲对涂层性能影响3个方面进行了分析,指出了可行的研究发展方向。  相似文献   

9.
In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.  相似文献   

10.
Wang  Le  Di  Yuelan  Liu  Ying  Wang  Haidou  You  Haoxing  Liu  Tao 《Frontiers of Mechanical Engineering》2019,14(4):452-460
Frontiers of Mechanical Engineering - Thermally grown oxide (TGO) may be generated in thermal barrier coatings (TBCs) after high-temperature oxidation. TGO increases the internal stress of the...  相似文献   

11.
The resistance of Ti(Mo)C–Ni cermets of different binder content to solid particle erosion was evaluated at 25, 350 and 650 °C. The elevated temperature erosion of cermets containing 40, 50, 60, 70 and 80 wt.% of titanium carbides and produced from the powder of initially different ratios of Ni to Mo were tested with the help of specially designed centrifugal particle accelerator using silica as the abrasive. Erosion rate was related to both microstructure developed during sintering and materials removal mechanisms operating at the test conditions (impact angle of particles jet was 30° and 90° and velocity was 50 ms−1). The erosion rate decreases with the increase of TiC and Mo contents in the composite. At 650 °C the process of tribo-oxidation affected the material performance to a great extent. The morphology of the worn surface was analyzed with SEM to determine the erosion mechanisms.  相似文献   

12.
Chang-Jiu Li  Guan-Jun Yang  Akira Ohmori 《Wear》2006,260(11-12):1166-1172
The lamellar structure determines mechanical properties of a thermal spray coating. A model for the erosion of thermally sprayed ceramic coatings resulting from the debonding of flattened ceramic particles is proposed based on the examination of the erosion mechanism. The relationship between erosion rate and microstructural parameters is established both experimentally and theoretically to reveal main lamellar structural parameters controlling erosion of thermally sprayed ceramic coating. The microstructural parameters include the mean bonding ratio between lamellae and thickness of the lamellae. The erosion rate of plasma-sprayed Al2O3 coatings was measured at impact angle of 90° under the fixed erosion test conditions. The correlation of theoretical model with the observed structural parameters and erosion data of alumina coatings was examined. It is revealed that the theoretical relationship agreed well with the observed relation. The results clearly revealed that the erosion of plasma-sprayed ceramic coating was inversely proportional to the mean lamellar bonding ratio. The influences of spray parameters on erosion effected mainly through their influences on the lamellar bonding. The erosion resistance of a thermally sprayed ceramic coating was controlled by coating fracture toughness.  相似文献   

13.
D. W. Wheeler  R. J. K. Wood 《Wear》2001,250(1-12):795-801
This paper describes an erosion study, which examines the effect of impact angle on the erosion behaviour of diamond coatings deposited on tungsten substrates by chemical vapour deposition (CVD). The coatings were 37–60 μm in thickness and were erosion tested using angular silica sand with a mean diameter of 194 μm at a particle velocity of 268 m s−1. The impact angles used were 30, 45, 60 and 90°. The results show that the damage features, termed “pin-holes” are generated at all angles, though the number of impacts required for pin-hole initiation is significantly increased at lower angles. This work provides useful information in attempting to explain the mechanism by which damage is generated during the high velocity sand erosion of CVD diamond.  相似文献   

14.
采用等离子喷涂工艺制备了NiCoCrAlY/ZrO2热障涂层,利用超音速火焰喷涂(HVOF)ZrO2粒子高速冲刷涂层表面,考察ZrO2热障涂层的耐高温冲刷性能。结果表明,等离子喷涂NiCoCrAlY/ZrO2热障涂层具有较好的耐高温冲刷性能,经高温高速粒子冲刷20s后,涂层与基体结合良好,涂层完整,未出现大面积的剥落。等离子喷涂ZrO2热障涂层高温冲刷的主要磨损机理为脉动冲击作用造成的裂纹扩展、涂层颗粒变形磨损和微切削。涂层的耐高温冲刷性能主要取决于涂层的硬度。  相似文献   

15.
The objective of this study was to analyse the erosion of API 5L X65 pipe steel whose microstructure consisted of ferrite and martensite obtained by quenching from intercritical temperature (770°C). Jet impingement tests with sand–water slurry were used. The changes in mechanical properties, caused by heat treatment carried out, did not induce changes in either the mechanism or erosion resistance. The erosion rate increased with angle of attack until 30° and later decreased until 90°. The microtexture of the eroded surfaces, at angles of attack of 30° and 90°, were similar for both conditions and were composed of craters and platelets at several stages of evolution. The erosion mechanism was by extrusion with the forming and forging of platelets.  相似文献   

16.
针对石油钻井过程中,由于钻井液中泥沙等固体颗粒产生的冲蚀磨损导致的旋流器失效问题,采用CFD-DPM模型开展以非牛顿流体为钻井液时旋流器冲蚀磨损研究,探讨不同流速、稠度系数、流动性指数、含砂体积比和入口倾角对旋流器内壁冲蚀磨损的影响。结果表明:旋流器内壁磨损呈螺旋状,锥段处磨损率随着半径的减小而增大,底流口处是受损最为严重的部位;在流速5~15 m/s、含砂体积比1%~9%时旋流器的最大冲蚀率随着流速增大呈指数型增长,冲蚀面积明显扩张;低流速下含砂体积比对最大冲蚀率影响较弱,而高流速下最大冲蚀率与含砂体积比呈正相关;入口倾角的增大同时增大了向下的轴向速度,使得颗粒能更快地到达底流口减小了与壁面的接触,其冲蚀率呈线性减小;最大冲蚀率随稠度系数的增大整体呈现平缓下降的趋势,随着流动性指数的增大而急速下降,流动性指数对冲蚀破坏的影响相比稠度系数更剧烈一些。  相似文献   

17.
Amkee Kim  Ilhyun Kim 《Wear》2009,267(11):1922-1926
The solid particle erosion behavior of epoxy base unidirectional and multidirectional carbon fiber reinforced plastic composites was investigated. The erosion rates of these composites were evaluated at various impingement angles (15–90°) with a particle velocity of 70 m/s. Irregular SiC particles with an average diameter of 80 μm was used. The dependence of impingement angle on the erosive wear resembled the conventional ductile behavior with maximum erosion rate at 15–30° impingement angle. The erosion rate of unidirectional composites at acute impingement angle was higher for [90] than for [45] and [0] while the difference disappeared at normal impingement angle (90°). On the other hand, the erosion rates of multidirectional laminated composites ([0/90], [45/−45], [90/30/−30] and [0/60/−60]) were not much influenced by the fiber orientation except for 15° impingement angle.  相似文献   

18.
《Wear》2007,262(1-2):167-175
A finite element methodology was developed to investigate tensile stresses in the surface of multilayered coatings under single particle impact, simulating particulate erosion conditions. Eight different coating architectures were analyzed to determine reduction in tensile stresses obtained through a combination of layering patterns and material property selections. Depending on actual layer configuration and materials properties used in the calculations, differences in tensile stresses up to 3.6 times were observed. In addition, the role of a bond coat and a load-spreading layer were analyzed to assess their effectiveness in erosion-resistant coatings. Overall, the best coating architecture, from the standpoint of maximizing tensile stress reduction, was the one with a thin, low-modulus top layer and a thick, high-modulus bottom layer.  相似文献   

19.
研究了黄河砂冲击下水轮机有20SiMn钢和0CrNi5Mo钢冲蚀攻角效应。结果表明:冲蚀分为孕育期、增加期和稳定期三个过程;低攻角“增重”小于大攻角;攻角增加,冲蚀率增大。水轮机用钢冲蚀攻角效应奇异性与黄河砂冲击下“变形冲蚀”、“切削”和“二次冲蚀”的相对作用大小有关。  相似文献   

20.
广泛应用于热能动力的热障涂层在高温工作环境下,由于温度梯度产生的热应力不匹配会导致热障涂层层裂或剥落失效。本文针对热障涂层层裂问题,考虑热应力不匹配因素,建立热障涂层层裂I/II复合型断裂准则,并针对分层裂纹在陶瓷层与粘结层界面上和附近的3种位置存在形式,进行了热障涂层结构单裂纹层裂的算例分析。结果表明界面处层裂纹对应变能释放率影响最大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号