首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fibrillar amyloid deposits are defining pathological lesions in Alzheimer's disease brain and are thought to mediate neuronal death. Amyloid is composed primarily of a 39-42 amino acid protein fragment of the amyloid precursor protein (APP), called amyloid beta-protein (Abeta). Because deposition of fibrillar amyloid in vitro has been shown to be highly dependent on Abeta concentration, reducing the proteolytic release of Abeta is an attractive, potentially therapeutic target. Here, the turnover rate of brain Abeta has been determined to define treatment intervals over which a change in steady-state concentration of Abeta could be measured. Mice producing elevated levels of human Abeta were used to determine approximate turnover rates for Abeta and two of its precursors, C99 and APP. The t1/2 for brain Abeta was between 1.0 and 2.5 hr, whereas for C99, immature, and fully glycosylated forms of APP695 the approximate t1/2 values were 3, 3, and 7 hr, respectively. Given the rapid Abeta turnover rate, acute studies were designed using phorbol 12-myristate 13-acetate (PMA), which had been demonstrated previously to reduce Abeta secretion from cells in vitro via induction of protein kinase C (PKC) activity. Six hours after intracortical injection of PMA, Abeta levels were significantly reduced, as measured by both Abeta40- and Abeta42-selective ELISAs, returning to normal by 12 hr. An inactive structural analog of PMA, 4alpha-PMA, had no effect on brain Abeta levels. Among the secreted N-terminal APP fragments, APPbeta levels were significantly reduced by PMA treatment, whereas APPalpha levels were unchanged, in contrast to most cell culture studies. These results indicate that Abeta is rapidly turned over under normal conditions and support the therapeutic potential of elevating PKC activity for reduction of brain Abeta.  相似文献   

2.
The amyloid precursor protein (APP) plays a crucial role in the pathogenesis of Alzheimer's disease. During intracellular transport APP undergoes a series of proteolytic cleavages that lead to the release either of an amyloidogenic fragment called beta-amyloid (Abeta) or of a nonamyloidogenic secreted form consisting of the ectodomain of APP (APPsec). It is Abeta that accumulates in the brain lesions that are thought to cause the disease. By reducing the cellular cholesterol level of living hippocampal neurons by 70% with lovastatin and methyl-beta-cyclodextrin, we show that the formation of Abeta is completely inhibited while the generation of APPsec is unperturbed. This inhibition of Abeta formation is accompanied by increased solubility in the detergent Triton X-100 and is fully reversible by the readdition of cholesterol to previously depleted cells. Our results show that cholesterol is required for Abeta formation to occur and imply a link between cholesterol, Abeta, and Alzheimer's disease.  相似文献   

3.
Overexpression and altered metabolism of amyloid precursor protein (APP) resulting in increased 4 kDa amyloid beta peptide (Abeta) production are believed to play a major role in Alzheimer's disease (AD). Therefore, reducing Abeta production in the brain is a possible therapy for AD. Because AD pathology is fairly restricted to the CNS of humans, we have established human cerebral primary neuron cultures to investigate the metabolism of APP. In many cell lines and rodent primary neuron cultures, phorbol ester activation of protein kinase C (PKC) increases the release of the secreted large N-terminal fragment of amyloid precursor protein (sAPP) and decreases Abeta release (; ; ). In contrast, we find that PKC activation in human primary neurons increases the rate of sAPP release and the production of APP C-terminal fragments and 4 kDa Abeta. Our results indicate species- and cell type-specific regulation of APP metabolism. Therefore, our results curtail the use of PKC activators in controlling human brain Abeta levels.  相似文献   

4.
Progressive cerebral deposition of the amyloid beta-protein (Abeta) is believed to play a pivotal role in the pathogenesis of Alzheimer's disease (AD). The highly amyloidogenic 42-residue form of Abeta (Abeta42) is the first species to be deposited in both sporadic and familial AD. Mutations in two familial AD-linked genes, presenilins 1 (PS1) and 2 (PS2), selectively increase the production of Abeta42 in cultured cells and the brains of transgenic mice, and gene deletion of PS1 shows that it is required for normal gamma-secretase cleavage of the beta-amyloid precursor protein (APP) to generate Abeta. To establish the subcellular localization of the PS1 regulation of APP processing to Abeta, fibroblasts from PS1 wild-type (wt) or knockout (KO) embryos as well as Chinese hamster ovary (CHO) cells stably transfected with wt or mutant PS1 were subjected to subcellular fractionation on discontinuous Iodixanol gradients. APP C-terminal fragments (CTF) were markedly increased in both endoplasmic reticulum- (ER-) and Golgi-rich fractions of fibroblasts from KO mice; moreover, similar increases were documented directly in KO brain tissue. No change in the subcellular distribution of full-length APP was detectable in fibroblasts lacking PS1. In CHO cells, a small portion of APP, principally the N-glycosylated isoform, formed complexes with PS1 in both ER- and Golgi-rich fractions, as detected by coimmunoprecipitation. When the same fractions were analyzed by enzyme-linked immunosorbent assays for Abetatotal and Abeta42, Abeta42 was the major Abeta species in the ER fraction (Abeta42:Abetatotal ratio 0.5-1.0), whereas absolute levels of both Abeta42 and Abeta40 were higher in the Golgi fraction and the Abeta42:Abetatoal ratio was 0.05-0.16 there. Mutant PS1 significantly increased Abeta42 levels in the Golgi fraction. Our results indicate PS1 and APP can interact in the ER and Golgi, where PS1 is required for proper gamma-secretase processing of APP CTFs, and that PS1 mutations augment Abeta42 levels principally in Golgi-like vesicles.  相似文献   

5.
The deposition of the beta amyloid peptide in neuritic plaques and cerebral blood vessels is a hallmark of Alzheimer's disease (AD) pathology. The major component of the amyloid deposit is a 4.2-kDa polypeptide termed amyloid beta-protein of 39-43 residues, which is derived from processing of a larger amyloid precursor protein (APP). It is hypothesized that a chymotrypsin-like enzyme is involved in the processing of APP. We have discovered a new serine protease from the AD brain by polymerase chain reaction amplification of DNA sequences representing active site homologous regions of chymotrypsin-like enzymes. A cDNA clone was identified as one out of one million that encodes Zyme, a serine protease. Messenger RNA encoding Zyme can be detected in some mammalian species but not in mice, rats, or hamster. Zyme is expressed predominantly in brain, kidney, and salivary gland. Zyme mRNA cannot be detected in fetal brain but is seen in adult brain. The Zyme gene maps to chromosome 19q13.3, a region which shows genetic linkage with late onset familial Alzheimer's disease. When Zyme cDNA is co-expressed with the APP cDNA in 293 (human embryonic kidney) cells, amyloidogenic fragments are detected using C-terminal antibody to APP. These co-transfected cells release an abundance of truncated amyloid beta-protein peptide and shows a reduction of residues 17-42 of Abeta (P3) peptide. Zyme is immunolocalized to perivascular cells in monkey cortex and the AD brain. In addition, Zyme is localized to microglial cells in our AD brain sample. The amyloidogenic potential and localization in brain may indicate a role for this protease in amyloid precursor processing and AD.  相似文献   

6.
Generalized oxidative deficits associated with experimental thiamine deficiency (TD) lead to selective neurodegeneration. In mouse brain, TD produces region-specific breach of the blood-brain barrier (BBB), neuronal loss and an accumulation of amyloid precursor protein (APP) in abnormal neurites. The APP-laden abnormal neurites within the damaged areas of mouse brain aggregate into neuritic clusters which strikingly resemble the neuritic component of Alzheimer amyloid plaques. However, amyloid beta-peptide (Abeta) immunoreactivity has not been demonstrated in these neuritic clusters, possibly because the Abeta region of APP in mice contains three amino acid substitutions as compared with the amino acid sequence of human Abeta. In contrast, the guinea pig nucleic acid sequence is more related to the human sequence and the Abeta region is identical in sequence to that of human APP. Thus, the current studies tested whether the presence of an authentic Abeta fragment of APP (i.e., identical to that of man) might make guinea pigs more vulnerable to the development of Abeta-containing neuritic clusters following TD. During late stages of TD, BBB abnormalities, manifested by immunoglobulin G (IgG) extravasation and increased NADPH diaphorase reactivity in microvessels, occurred in brain areas known to be damaged by TD in mice. However, despite the prolonged thiamine deprivation and the advanced neurological symptoms of guinea pigs, no significant neuronal loss or altered APP/Abeta immunostaining occurred in any brain region. Microglial activation, another early marker of damage in mice, was not evident in thiamine-deficient guinea pig brain. Ferritin immunoreactivity and iron deposition in oligodendrocytes within areas of BBB abnormalities were either slightly enhanced or unchanged as compared to controls. This is the first report of brain abnormalities in the guinea pig model of dietary and pyrithiamine-induced TD. The results demonstrate species differences in the response to TD-induced damage, and further support the role of BBB and nitric oxide in the initial events in TD pathology.  相似文献   

7.
We studied the role of the amyloid precursor protein (APP) in ischemic brain damage using transgenic mice overexpressing APP. The middle cerebral artery (MCA) was occluded in FVB/N mice expressing APP695.SWE (Swedish mutation) and in nontransgenic littermates. Infarct volume (cubic millimeters) was assessed 24 hr later in thionin-stained brain sections. The infarct produced by MCA occlusion was enlarged in the transgenics (+32 +/- 6%; n = 12; p < 0. 05; t test). Measurement of APP by ELISA revealed that, although relatively high levels of Abeta were present in the brain of the transgenics (Abeta1-40 = 80 +/- 19 pmol/g; n = 6), there were no differences between ischemic and nonischemic hemispheres (p > 0.05). The reduction in cerebral blood flow produced by MCA occlusion at the periphery of the ischemic territory was more pronounced in APP transgenics (-42 +/- 8%; n = 9) than in controls (-20 +/- 8%; n = 9). Furthermore, the vasodilatation produced by neocortical application of the endothelium-dependent vasodilator acetylcholine (10 microM) was reduced by 82 +/- 5% (n = 8; p < 0.05) in APP transgenics. The data demonstrate that APP overexpression increases the susceptibility of the brain to ischemic injury. The effect is likely to involve the Abeta-induced disturbance in endothelium-dependent vascular reactivity that leads to more severe ischemia in regions at risk for infarction. The cerebral vascular actions of peptides deriving from APP metabolism may play a role in the pathogenic effects of APP.  相似文献   

8.
The insoluble amyloid deposited extracellularly in the brains of patients with Alzheimer's disease (AD) is composed of amyloid beta protein, a approximately 4-kDa secreted protein that is derived from a set of large proteins collectively referred to as the amyloid beta protein precursor (betaAPP). During normal processing the betaAPP is cleaved by beta secretase, producing a large NH2-terminal secreted derivative (sAPPbeta) and a COOH-terminal fragment beginning at Abeta1, which is subsequently cleaved by gamma secretase releasing secreted Abeta. Most secreted Abeta is Abeta1-40, but approximately 10% of secreted Abeta is Abeta1-42. Alternative betaAPP cleavage by alpha secretase produces a slightly longer NH2-terminal secreted derivative (sAPPalpha) and a COOH-terminal fragment beginning at Abeta17, which is subsequently cleaved by gamma secretase releasing a approximately 3-kDa secreted form of Abeta (P3). Several of the betaAPP isoforms that are produced by alternative splicing contain a 56-amino acid Kunitz protease inhibitor (KPI) domain known to inhibit proteases such as trypsin and chymotrypsin. To determine whether the KPI domain influences the proteolytic cleavages that generate Abeta, we compared Abeta production in transfected cells expressing human KPI-containing betaAPP751 or KPI-free betaAPP695. We focused on Abetas ending at Abeta42 because these forms appear to be most relevant to AD. Using specific sandwich enzyme-linked immunosorbent assays, we analyzed full-length Abeta1-42 and total Abeta ending at Abeta42 (Abeta1-42 + P3(42)). In addition, we analyzed the large secreted derivatives produced by alpha secretase (sAPPalpha) and beta secretase (sAPPbeta). In mouse teratocarcinoma (P19) cells expressing betaAPP695 or betaAPP751, expression of the KPI-containing betaAPP751 resulted in the secretion of a lower percentage of P3(42) and sAPPalpha and a correspondingly higher percentage of Abeta1-42 and sAPPbeta. Similar results were obtained in human embryonic kidney (293) cells. These results indicate that expression of the KPI domain reduces alpha secretase cleavage so that less P3 and relatively more full-length Abeta are produced. Thus, in human brain and in animal models of AD, the amount of KPI-containing betaAPP produced may be an important factor influencing Abeta deposition.  相似文献   

9.
A novel protein, human X11-like (human X11L), contains a phosphotyrosine interaction (PI) domain and two PDZ domains and displays 55.2% amino acid homology with the human X11 (human X11). The PI domain of human X11L interacts with a sequence containing the NPXY motif found in the cytoplasmic domain of Alzheimer's amyloid precursor protein. A construct lacking the carboxyl-terminal domain, which comprises two PDZ domains (N + PI), enhances PI binding to APP, whereas another construct lacking an amino-terminal domain relative to PI domain (PI + C) suppresses PI binding to APP. Overexpression of full-length human X11L (N + PI + C) in cells that express APP695 stably decreased the secretion of Abeta40 but not that of Abeta42. However, overexpression of the PI domain alone and the N + PI construct in cells did not affect the secretion of Abeta despite their ability to bind to the cytoplasmic domain of Alzheimer's amyloid precursor protein. These observations suggest that the amino-terminal domain regulates PI binding to APP and that the carboxyl-terminal domain containing PDZ motifs is essential to modulate APP processing. Because expression of the human X11L gene is specific to brain, the present observations should contribute to shedding light on the molecular mechanism of APP processing in Alzheimer's disease.  相似文献   

10.
Amyloid deposition is a neuropathological hallmark of Alzheimer's disease. The principal component of amyloid deposits is beta amyloid peptide (Abeta), a peptide derived by proteolytic processing of the amyloid precursor protein (APP). APP is axonally transported by the fast anterograde component. Several studies have indicated that Abeta deposits occur in proximity to neuritic and synaptic profiles. Taken together, these latter observations have suggested that APP, axonally transported to nerve terminals, may be processed to Abeta at those sites. To examine the fate of APP in the CNS, we injected [35S]methionine into the rat entorhinal cortex and examined the trafficking and processing of de novo synthesized APP in the perforant pathway and at presynaptic sites in the hippocampal formation. We report that both full-length and processed APP accumulate at presynaptic terminals of entorhinal neurons. Finally, we demonstrate that at these synaptic sites, C-terminal fragments of APP containing the entire Abeta domain accumulate, suggesting that these species may represent the penultimate precursors of synaptic Abeta.  相似文献   

11.
Some clues suggest that neuronal damage induces a secondary change of amyloid beta protein (Abeta) metabolism. We investigated this possibility by analyzing the secretion of Abeta and processing of its precursor protein (amyloid precursor protein, APP) in an in vitro model of neuronal apoptosis. Primary cultures of rat cerebellar granule neurons were metabolically labeled with [35S]methionine. Apoptosis was induced by shifting extracellular KCl concentration from 25 mM to 5 mM for 6 h. Control and apoptotic neurons were then subjected to depolarization-stimulated secretion. Constitutive and stimulated secretion media and cell lysates were immunoprecipitated with antibodies recognizing regions of Abeta, full-length APP, alpha- and beta-APP secreted forms. Immunoprecipitated proteins were separated by SDS/PAGE and quantitated with a PhosphorImager densitometer. Although intracellular full-length APP was not significantly changed after apoptosis, the monomeric and oligomeric forms of 4-kDa Abeta were 3-fold higher in depolarization-stimulated secretion compared with control neurons. Such increments were paralleled by a corresponding increase of the beta-APPs/alpha-APPs ratio in apoptotic secretion. Immunofluorescence studies performed with an antibody recognizing an epitope located in the Abeta sequence showed that the Abeta signal observed in the cytoplasm and in the Golgi apparatus of control neurons is uniformly redistributed in the condensed cytoplasm of apoptotic cells. These studies indicate that neuronal apoptosis is associated with a significant increase of metabolic products derived from beta-secretase cleavage and suggest that an overproduction of Abeta may be the consequence of neuronal damage from various causes.  相似文献   

12.
Recent studies of cellular amyloid precursor protein (APP) metabolism demonstrate a beta-/gamma-secretase pathway resident to the endoplasmic reticulum (ER)/Golgi resulting in intracellular generation of soluble APP (APPsbeta) and Abeta42 peptide. Thus, these intracellular compartments may be key sites of amyloidogenic APP metabolism and Alzheimer's disease pathogenesis. We hypothesized that the ER chaperone immunoglobulin binding protein (BiP/GRP78) binds to and facilitates correct folding of nascent APP. Metabolic labeling and immunoprecipitation of transiently transfected human embryonic kidney 293 cells demonstrated co-precipitation of APP with GRP78, revealing their transient interaction in the ER. Maturation of cellular APP was impaired by this interaction. Furthermore, the levels of APPs, Abeta40, and Abeta42 recovered in conditioned medium were lower compared with cells transfected with APP alone. Co-expression with APP of GRP78 T37G, an ATPase mutant, almost completely blocked cellular APP maturation as well as recovery of APPs, Abeta40, and Abeta42 in conditioned medium. The inhibitory effects of GRP78 and GRP78 T37G on Abeta40 and Abeta42 secretion were magnified by co-expression with the Swedish mutation of APP (K670N/M671L). Collectively, these data suggest a transient and direct interaction of GRP78 with APP in the ER that modulates intracellular APP maturation and processing and may facilitate its correct folding.  相似文献   

13.
Apolipoprotein E (apoE), a high-affinity ligand for lipoprotein receptors, is synthesized by the liver and extrahepatic tissues, including cells of the monocyte/macrophage lineage. Inactivation of the apoE gene in mice leads to a prominent increase in serum cholesterol and triglyceride levels and the development of premature atherosclerosis. In this study, the role of monocyte/macrophage-derived apoE in lipoprotein remnant metabolism and atherogenesis was assessed. The influence of apoE gene dosage on serum lipid concentrations was determined by transplantation of homozygous apoE-deficient (apoE-/-), heterozygous apoE-deficient (apoE+/-), and wild-type (apoE+/+) bone marrow in homozygous apoE-deficient mice. The concentration of apoE detected in serum was found to be gene dosage dependent, being 3.52 +/- 0.30%, 1.87 +/- 0.17%, and 0% of normal in transplanted mice receiving either apoE+/+, apoE+/-, or apoE-/- bone marrow, respectively. These low concentrations of apoE nevertheless dramatically reduced serum cholesterol levels owing to a reduction of VLDL and, to a lesser extent, LDL, while HDL levels were slightly raised. After 4 months on a "Western-type" diet, atherosclerosis was evidently reduced in mice transplanted with apoE+/+ bone marrow, compared with control transplanted mice. To study the mechanism of the lipoprotein changes on bone marrow transplantation, the in vivo turnover of autologous serum (beta)VLDL was studied. The serum half-life of (beta)VLDL in transplanted mice, compared with control apoE-deficient mice, was shortened mainly as a consequence of an increased recognition and uptake by the liver. Analysis of the relative contribution of the liver parenchymal cells, endothelial cells, and Kupffer cells (liver tissue macrophages) indicated an increased uptake by parenchymal cells, while the relative contribution to Kupffer cells was decreased. In conclusion, macrophage-derived apoE can dose-dependently reduce hypercholesterolemia in apoE-deficient mice owing to increased recognition and uptake of (beta)VLDL by parenchymal liver cells, leading to a decreased susceptibility to atherosclerosis.  相似文献   

14.
Variation at the APOE gene locus has been shown to affect the risk for Alzheimer's disease. To gain deeper insight into the postulated apoE-mediated amyloid formation, we have characterized the three common apoE isoforms (apoE2, apoE3, and apoE4) regarding their binding to amyloid precursor protein (APP). We employed the yeast two-hybrid system and co-immunoprecipitation experiments in cell culture supernatants of COS-1 cells, ectopically expressing apoE isoforms and APP751 holoprotein or a COOH-terminal Abeta deletion mutant protein, designated APPtrunc. We found that all three apoE isoforms were able to bind APP751 holoprotein in an Abeta-independent fashion. The interacting domains could be mapped to the NH2 termini of APP (amino acids 1-207) and apoE (amino acids 1-191). As a functional consequence of this novel APP751 ectodomain-mediated apoE binding, the secretion of soluble APP751 is differentially affected by distinct apoE isoforms in vitro, suggesting a new "chaperon-like" mechanism by which apoE isoforms may modulate APP metabolism and consequently the risk for Alzheimer's disease.  相似文献   

15.
Amyloid peptides of 39-43 amino acids (Abeta) are the major constituents of amyloid plaques present in the brains of Alzheimer's (AD) patients. Proteolytic processing of the amyloid precursor protein (APP) by the yet unidentified beta- and gamma-secretases leads to the generation of the amyloidogenic Abeta peptides. Recent data suggest that all of the known mutations leading to early onset familial AD alter the processing of APP such that increased amounts of the 42-amino acid form of Abeta are generated by a gamma-secretase activity. Identification of the beta- and/or gamma-secretases is a major goal of current AD research, as they are prime targets for therapeutic intervention in AD. It has been suggested that the sterol regulatory element-binding protein site 2 protease (S2P) may be identical to the long sought gamma-secretase. We have directly tested this hypothesis using over-expression of the S2P cDNA in cells expressing APP and by characterizing APP processing in mutant Chinese hamster ovary cells that are deficient in S2P activity and expression. The data demonstrate that S2P does not play an essential role in the generation or secretion of Abeta peptides from cells, thus it is unlikely to be a gamma-secretase.  相似文献   

16.
The amyloid protein, Abeta, which accumulates in the brains of Alzheimer patients, is derived by proteolysis of the amyloid protein precursor (APP). APP can undergo endoproteolytic processing at three sites, one at the amino terminus of the Abeta domain (beta-cleavage), one within the Abeta domain (alpha-cleavage), and one at the carboxyl terminus of the Abeta domain (gamma-cleavage). The enzymes responsible for these activities have not been unambiguously identified. By the use of gene disruption (knockout), we now demonstrate that TACE (tumor necrosis factor alpha converting enzyme), a member of the ADAM family (a disintegrin and metalloprotease-family) of proteases, plays a central role in regulated alpha-cleavage of APP. Our data suggest that TACE may be the alpha-secretase responsible for the majority of regulated alpha-cleavage in cultured cells. Furthermore, we show that inhibiting this enzyme affects both APP secretion and Abeta formation in cultured cells.  相似文献   

17.
18.
LPS (endotoxin) and proinflammatory cytokines (IL-6, IL-1, and TNF-alpha) are potent inducers of acute phase proteins (APP). Since LPS induces high levels of these cytokines after its interaction with CD14, a protein expressed on the surface of monocytes and neutrophils, it has been assumed that CD14 mediates the LPS induction of APP expression. To test this hypothesis, CD14-deficient and control mice were injected with low doses of LPS, and the expression of several APP that are normally up-regulated by LPS was measured. CD14-deficient mice showed no alteration in the induction of APP, including serum amyloid A, LPS-binding protein, fibrinogen, or ceruloplasmin; in contrast, C3H/HeJ mice, which carry a mutation in the Lps gene, do not up-regulate the expression of these proteins. These studies show that the up-regulation of APP by LPS utilizes a non-CD14 receptor and requires a functional Lps gene.  相似文献   

19.
Apolipoproteins have been implicated in the formation of amyloid fibrils. Recent studies have demonstrated that apolipoprotein E (apoE), alone or in combination with apolipoprotein J (apoJ), and other lipoproteins appear to enhance deposition of amyloid fibrils both in systemic and cerebral amyloids, especially Alzheimer's disease (AD). ApoE enhanced the ability of the amyloid beta-protein (1-40) fragment (A beta) to form fibrils in vitro, with apoE4 promoting the greatest fibril formation. ApoE was found associated with both human and mouse amyloid A (AA) deposits. To define the role of apoE in vivo, we utilized mice lacking the apoE gene by gene targeting. We used the AA model in mice to characterize the function of the apoE protein in amyloid fibrillogenesis. ApoE-deficient mice exhibited a decrease in deposition of AA when compared with heterozygous mutant or wild-type animals. In addition, apoE-deficient mice that were injected with an adenovirus that expressed the human apoE3 gene had restored AA deposition and the apoE was associated with the AA fibrils. These results are agreement with the in vitro studies using the beta-peptide and suggest that apoE is not essential for amyloid fibrillogenesis but can promote the development of amyloid deposition.  相似文献   

20.
The characteristic features of a brain with Alzheimer disease (AD) include the presence of neuritic plaques composed of amyloid beta-protein (Abeta) and reductions in the levels of cholinergic markers. Neurotoxic responses to Abeta have been reported in vivo and in vitro, suggesting that the cholinergic deficit in AD brain may be secondary to the degeneration of cholinergic neurons caused by Abeta. However, it remains to be determined if Abeta contributes to the cholinergic deficit in AD brain by nontoxic effects. We examined the effects of synthetic Abeta peptides on the cholinergic properties of a mouse cell line, SN56, derived from basal forebrain cholinergic neurons. Abeta 1-42 and Abeta 1-28 reduced the acetylcholine (AcCho) content of the cells in a concentration-dependent fashion, whereas Abeta 1-16 was inactive. Maximal reductions of 43% and 33% were observed after a 48-h treatment with 100 nM of Abeta 1-42 and 50 pM of Abeta 1-28, respectively. Neither Abeta 1-28 nor Abeta 1-42 at a concentration of 100 nM and a treatment period of 2 weeks was toxic to the cells. Treatment of the cells with Abeta 25-28 (48 h; 100 nM) significantly decreased AcCho levels, suggesting that the sequence GSNK (aa 25-28) is responsible for the AcCho-reducing effect of Abeta. The reductions in AcCho levels caused by Abeta 1-42 and Abeta 1-28 were accompanied by proportional decreases in choline acetyltransferase activity. In contrast, acetylcholinesterase activity was unaltered, indicating that Abeta specifically reduces the synthesis of AcCho in SN56 cells. The reductions in AcCho content caused by Abeta 1-42 could be prevented by a cotreatment with all-trans-retinoic acid (10 nM), a compound previously shown to increase choline acetyltransferase mRNA expression in SN56 cells. These results demonstrate a nontoxic, suppressive effect of Abeta on AcCho synthesis, an action that may contribute to the cholinergic deficit in AD brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号