首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Assessment of excavation damaged zone using a micromechanics model   总被引:14,自引:0,他引:14  
It is well known that acoustic emission (AE) and microseismic (MS) events are indicators of rock fracturing or damage as the rock is brought to failure at high stress. By capturing the microseismic events, underground excavation induced rock mass degradation or damage can be located. The use of microseismic method has been shown as a valuable tool in a number of nuclear waste repository research programs to monitor the extent of the excavation damaged zone (EDZ), but most of the works are limited to a qualitative assessment.This paper presents a study on the quantification of the degree of damage, in terms of crack density calculated from the crack length, and the extent, in terms of crack density distribution, from microseismic event monitoring data. The approach builds on the finding that a realistic crack size corresponding to a microseismic event can be established by applying a tensile cracking model instead of the traditional shear model, commonly used in earthquake data analysis. It can be shown that brittle rock failure is the result of tensile crack initiation, propagation, accumulation, and interaction. Tensile stress can be generated in a confined rock with heterogeneous material properties. When a crack is formed by tensile cracking in this fashion, its orientation tends to become parallel to the direction of maximum compressive stress. A method is developed to take microseismic event monitoring data as input to determine the damage state and the extent of the EDZ by crack distribution. Based on the crack orientation and crack density information, the rock is modeled by a micro-mechanics based constitutive model which considers the anisotropic material properties. Numerical examples are presented using field monitoring data from a tunnel in granite to demonstrate how microseismicity can be quantitatively linked to dynamic rock mass properties.  相似文献   

2.
The excavation impact (e.g. due to blasting, TBM drilling, etc.) induces an excavation damaged or disturbed zone around a tunnel. In this regard, in drill and blast method, the damage to the rock mass is more significant. In this zone, the stiffness and strength parameters of the surrounding rock mass are different. The real effect of a damage zone developed by an excavation impact around a tunnel, and its influence on the overall response of the tunnel is of interest to be quantified. In this paper, a fully analytical solution is proposed, for stresses and displacements around a tunnel, excavated in an elastic–brittle–plastic rock material compatible with linear Mohr–Coulomb criterion or a nonlinear Hoek–Brown failure criterion considering the effect of the damaged zone induced by the excavation impact. The initial stress state is assumed to be hydrostatic, and the damaged zone is assumed to have a cylindrical shape with varied parameters; thus, the problem is considered axial-symmetric. The proposed solution is used to explain the behavior of tunnels under different damage conditions. Illustrative examples are given to demonstrate the performance of the proposed method, and also to examine the effect of the damaged zone induced by the excavation impact. The results obtained by the proposed solution indicate that, the effects of the alteration of rock mass properties in the damaged zone may be considerable.  相似文献   

3.
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method(FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory(URL)Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks(DFNs)of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.  相似文献   

4.
The Opalinus Clay formation is currently being investigated as a potential host rock for the deep geological disposal of radioactive waste in Switzerland. Recently, a test tunnel was excavated at the Mont Terri underground rock laboratory (URL) as part of a long-term research project (“Full-scale Emplacement (FE) experiment”) aimed at studying the thermo-hydro-mechanical (THM) effects induced by the presence of an underground repository. The objective of this paper is twofold. Firstly, the results of the rock mass monitoring programme carried out during the construction of the 3 m diameter, 50 m long FE tunnel are presented, with particular focus on the short-term deformation response. The deformation measurements, including geodetic monitoring of tunnel wall displacements, radial extensometers and longitudinal inclinometers, indicate a strong directionality in the excavation response. Secondly, the deformational behaviour observed in the field is analyzed using a hybrid finite-discrete element (FDEM) analysis to obtain further insights into the formation of the excavation damaged zone (EDZ). The FDEM simulation using the Y-Geo code is calibrated based on the average short-term response observed in the field. Deformation and strength anisotropy are captured using a transversely isotropic, linear elastic constitutive law and cohesive elements with orientation-dependent strength parameters. Overall, a good agreement is obtained between convergences measured in the field and numerical results. The simulated EDZ formation process highlights the importance of bedding planes in controlling the failure mechanisms around the underground opening. Specifically, failure initiates due to shearing of bedding planes critically oriented with respect to the compressive circumferential stress induced around the tunnel. Slippage-induced rock mass deconfinement then promotes extensional fracturing in the direction perpendicular to the bedding orientation. The simulated fracture pattern is consistent with previous experimental evidence from the Mont Terri URL.  相似文献   

5.
The inevitable influence of large excavation in soft soils on nearby tunnels is of great concern in practice. In this paper, the influence of a nearby large excavation on existing metro tunnels of the Ningbo Metro Line 1 in sensitive soft soils is investigated and presented. Considerable displacement in the left tunnel closer to the excavation induced by the nearby excavation was revealed by field monitoring. Visible cracks and leakages were observed in left tunnel linings. Three dimensional numerical simulations are conducted to investigate the responses of the ground and left tunnel due to the adjacent excavation. The development of bending moment and displacement of the left tunnel during different construction stages of the nearby excavation is obtained. Then the interaction mechanism between the nearby excavation, surrounding soils and existing twin tunnels is investigated, which is of significance to the interpretation of the influence of the nearby excavation on the existing twin tunnels. Several protective measures for alleviating the influence of adjacent excavation on left tunnel are studied, including divided excavation, soil improvement and a cut-off wall. It is found that the left tunnel is influenced to varying degrees during different construction stages and the time effect is distinct for this large excavation in soft soils, which would be suggestive to engineers to pay more attention to the protection of adjacent tunnel during the crucial construction stages. The bending moment and displacement of the left tunnel is strongly related to the unloading effects and displacement of surrounding soils, which can be alleviated by means of proper improvement of excavation sequence. Comparatively, longitudinally divided excavation is more effective in protecting the left tunnel than soil improvement or a cut-off wall. This study is of certain reference value for protecting metro tunnels adjacent excavation in soft soils.  相似文献   

6.
A zone with significant irreversible deformations and significant changes in flow and transport properties is expected to be formed around underground excavations in indurated clay. The stress perturbation around the excavation could lead to a significant increase of the permeability, related to diffuse and/or localised crack propagation in the material. The main objective of this study is to model these processes at large scale in order to assess their impacts on the performance of radioactive waste geological repositories. This paper concerns particularly the hydro-mechanical modelling of a long-term dilatometer experiment performed in Mont Terri Rock Laboratory in Switzerland. The proposed model defines the permeability as a function of the aperture of the cracks that are generated during the excavation. With this model, the permeability tensor becomes anisotropic. Advantages and drawbacks of this approach are described using the results of the Selfrac long-term dilatometer experiment.  相似文献   

7.
This paper is to contribute to the understanding of the behaviour of tunnels in swelling ground. An Italian case study of a tunnel, collapsed due to swelling of a stiff clay, is taken as an example. The stress paths during excavation of elements of ground around the opening are computed in order to evidence the significant difference to that reproduced by usual swelling tests in the laboratory. An innovative triaxial testing procedure is developed and the stiff-clay tested. A numerical simulation of the swelling phenomenon induced by the excavation of the tunnel, based on the experimental results obtained, is then compared to site observations.  相似文献   

8.
9.
The Serra da Mesa Hydroelectric Power Plant, located in the Tocantins river, 210 km north of Brasilia, Brazil, has been completed and power (1200 MW) has been generated since 1998. This project includes one of the largest underground structures in Brazil, totalling 550,000 m3 of underground excavations in rock for the hydraulic circuit which was excavated in very high quality granite. Geotechnical investigations, laboratory tests and geological mapping showed that the rock mass could be considered as a continuous, homogeneous, isotropic and linearly elastic (CHILE) material.

In situ tests, for obtaining the natural stress tensor, namely hydraulic fracturing and small flat jack tests (SFJ), were executed. The hydraulic fracturing tests were performed in two boreholes, at the planned position of the future underground structures. SFJ were executed in a test gallery especially constructed for the purpose. These latter tests confirmed the in situ rock stress data obtained from the hydraulic fracturing tests.

This paper presents a new technique for interpretation of the SFJ results. This is achieved by inputting the SFJ measurements into a 3D program that compiles the influence matrix of the excavated rock mass domain and then, via the least square technique, the determination of the stress tensor. All the equations are fully developed and the methodology is presented in its entirety. The successful application of the methodology is also presented, with comparisons between the results obtained and the in situ stress tensor determined by other methods.  相似文献   


10.
Squeezing rock conditions at the contact zone of an andesitic-basaltic body and tuff country rocks in the Taloun tunnels were investigated and analyzed. Evaluation of the rock mass properties illustrates the fact that they were significantly reduced at the contact zone, especially when wet. Detailed monitoring and measurements of tunnel-wall convergence at the contact zone in the Taloun service tunnel, during the 10 months following excavation and installation of initial support, prior to installation of heavy support, showed greater than 3% of the normalized tunnel closure. This confirms moderate squeezing conditions at the contact zone. The measured displacement was even higher than that of the fault zone in which deformation was decreased during the first month and eventually stabilized. Similarly, numerical modeling of the deformation at the contact zone not only confirmed a higher value of the tunnel convergence but also demonstrated the reduction of in situ stress and development of plastic zones across the contact zone. These data are also believed to account for the squeezing condition at the contact zone. It is expected that this condition will be significantly increased in the main road tunnels due to the fact that these tunnels are twice as wide as the service tunnel. Therefore, proper and timely support must be applied. Numerical analysis of the support at the contact zone showed that the stress due to bending moment is greater than that of the axial forces on the lining. This calls for certain support measures in the form of permanent lining and two layers of steel bars to compensate for the tensile stress exertion on the lining.  相似文献   

11.
The stability and deformation of the permanent shiplock slopes are among the key issues in the design and construction of the Three Gorges Project. The permanent shiplock slopes, formed by deeply and steeply cutting into weathered and fresh granites, are 1607 m in length and 50–170 m in height. The disturbed zone in the permanent cut slopes induced by excavation is therefore one of the most important aspects in slope stability and deformation evaluation. A comprehensive investigation including non-linear finite element analysis, in-situ testing, instrumentation and monitoring, back analysis and rock mass quality rating has been carried out for the identification and evaluation of the excavation disturbed zone in the permanent cut slopes. The results of the investigation confirmed the existence of such an excavation disturbed zone in the permanent cut slopes. This zone is characterized by a considerable weakening in the mechanical properties of the rock mass. From the cut surface to the deeper region of the permanent cut slopes, the excavation disturbed zone can be further divided into a damaged zone, an affected zone and a slightly affected zone according to the extent of weakening in the rock mass. The damaged zone and the affected zone have thicknesses of 5–10 m and 10–20 m, respectively. The exact pattern of the excavation disturbed zone is variable in different parts of the permanent cut slopes and are generally similar to that of the plastic zones estimated by using the non-linear finite element analysis. The present investigation has provided both factual data and insights for the stability and deformation evaluation of the permanent shiplock slopes. The approach and methodology developed in the paper can be used to assess similar excavation disturbed zones in other large cut slopes.  相似文献   

12.
Safe production and induced hazard prevention in coal mines mainly concern problems in the excavation disturbed zone (EDZ), but coal mining can also make a significant impact on the environment. Comprehensive techniques using a borehole TV viewer system, electrical logging, and monitoring of drilling fluid leakage offer the ability to identify changing geological conditions and the location of any nearby abandoned mining workings. The inner collapsed zone and the expanding height of the crack zone transmitting water plus their spatial distribution after excavating the superincumbent coal seam stratum are determined at no. L3414 workings, Lingxin Coal Mine beneath the Xitian river, China. An integrated system of GIS-based on a stochastic model, which has been developed for the prediction of dynamic subsidence coupling the time function and probabilistic integral method, is verified through practice at the Lingxin Coal Mine. This development has greatly expanded the ability of the mine operator to characterize previously inaccessible areas of the mine, providing a reliable basis for safe mining and prevention of induced-hazards to ensure high production mining underneath the river bed.  相似文献   

13.
A new percolation model is presented that predicts the dilatancy-induced permeability increase in the excavation damaged zone (EDZ) of rocks salt. The micro-fracture geometry and network properties of the rock salt samples are determined by visualisation and evaluated by using statistical and stereological methods. The permeability at full connectivity is modelled using the cubic law with a semi-empirical estimation of the micro-fracture aperture. This model is coupled with a percolation model to incorporate the connectivity behaviour. The percolation threshold is related to the dilatancy boundary, which is defined as the starting point for the energy release that causes the grain boundaries to dislocate. The shift between the dilatancy boundary and the percolation threshold is further applied to complete the modelling approach. The model is calibrated and validated by the stress-permeability results of the triaxial measurements. The matches vary from satisfactory to excellent.  相似文献   

14.
This paper outlines the construction process mechanics (CPM) principle for analysing the stability of rock tunnels and presents finite element method (FEM) numerical simulation and prediction on the deformation and failure of the rock masses surrounding tunnels under various rock mass properties and excavating and support conditions. Based on numerical modelling, a series of predicting curves for rock mass response and deformation are obtained, which provides the basis of guiding the design and construction of rock tunnels in Taiwan.  相似文献   

15.
The prediction of blast crater in brittle rock due to an underground explosion has gained importance in recent years due to the great number of accidental events that affected engineering safety. This paper uses the TaylorChenKuszmaul (TCK) continuum damage model to analyze dynamic fracture behavior of rock in tension due to blast loading. The TCK damage model, together with an erosion algorithm, was implemented into the explicit FE code, LS-DYNA, as a constitutive augmentation. The damage pattern around the blasthole and the formation of blast crater near a free surface were subsequently simulated using the developed numerical tool. It is shown that the free surface is vitally responsible for the blast crater. Furthermore, the size and shape of the blast craters can be reasonably predicted if the erosion criterion of critical tensile damage is well calibrated. The effects of common charge modes on blast craters were also investigated numerically, and the mechanisms of the coupled, air-decoupled and water-decoupled charge mode are compared and presented.  相似文献   

16.
采动影响下覆岩垮落过程的数值模拟   总被引:37,自引:0,他引:37       下载免费PDF全文
应用岩层破断过程分析SFPA2D系统 ,分析了采动影响下覆岩破坏的动态发展过程。数值模拟再现了上覆岩层离层、弯曲、沉降、开裂直至冒落的全过程 ,以及采动工作面推进过程中逐步演化的应力场和应变场。根据数值模拟的结果 ,初步探讨了覆岩破断机理 ,指出覆岩的破断特征受分步开挖引起的应力重新分布及其损伤积累以及岩梁的非均质性的影响。  相似文献   

17.
Due to advances in numerical modelling, it is possible to capture complex support-ground interaction intwo dimensions and three dimensions for mechanical analysis of complex tunnel support systems,although such analysis may still be too complex for routine design calculations. One such system is theforepole element, installed within the umbrella arch temporary support system for tunnels, whichwarrants such support measures. A review of engineering literature illustrates that a lack of designstandards exists regarding the use of forepole elements. Therefore, when designing such support, designersmust employ complex numerical models combined with engineering judgement. With referenceto past developments by others and new investigations conducted by the authors on the Driskos tunnelin Greece and the Istanbul metro, this paper illustrates how advanced numerical modelling tools canfacilitate understanding of the influences of design parameters associated with the use of forepole elements.In addition, this paper highlights the complexity of the ground-support interaction whensimulated with two-dimensional (2D) finite element software using a homogenous reinforced region,and three-dimensional (3D) finite difference software using structural elements. This paper further illustratessequential optimisation of two design parameters (spacing and overlap) using numericalmodelling. With regard to capturing system behaviour in the region between forepoles for the purpose ofdimensioning spacing, this paper employs three distinctive advanced numerical models: particle codes,continuous finite element models with joint set and Voronoi blocks. Finally, to capture the behaviour/failure ahead of the tunnel face (overlap parameter), 2D axisymmetric models are employed. Finally,conclusions of 2D and 3D numerical assessment on the Driskos tunnel are drawn. The data enriched casestudy is examined to determine an optimum design, based on the proposed optimisation of designparameters, of forepole elements related to the si  相似文献   

18.
A powerful numerical method that can be used for modeling rock-structure interaction is the discontinuous deformation analysis (DDA) method developed by Shi in 1988. In this method, rock masses are treated as systems of finite and deformable blocks. Large rock mass deformations and block movements are allowed. Although various extensions of the DDA method have been proposed in the literature, the method is not capable of modeling water-block interaction, sequential loading or unloading and rock reinforcement; three features that are needed when modeling surface or underground excavation in fractured rock. This paper presents three new extensions to the DDA method. The extensions consist of hydro-mechanical coupling between rock blocks and steady water flow in fractures, sequential loading or unloading, and rock reinforcement by rockbolts, shotcrete or concrete lining. Examples of application of the DDA method with the new extensions are presented. Simulations of the underground excavation of the ‘Unju Tunnel’ in Korea were carried out to evaluate the influence of fracture flow, excavation sequence and reinforcement on the tunnel stability. The results of the present study indicate that fracture flow and improper selection of excavation sequence could have a destabilizing effect on the tunnel stability. On the other hand, reinforcement by rockbolts and shotcrete can stabilize the tunnel. It is found that, in general, the DDA program with the three new extensions can now be used as a practical tool in the design of underground structures. In particular, phases of construction (excavation, reinforcement) can now be simulated more realistically. However, the method is limited to solving two-dimensional problems.  相似文献   

19.
A numerical simulator based on RFPA (Rock Failure Process Analysis) is used to study the deformation and failure process of a Brazilian disk of heterogeneous rock when subjected to static and dynamic loading conditions. In this simulator, the heterogeneity of rock is considered by assuming that the material properties of elements conform to a Weibull distribution; an elastic damage-based law that considers the strain-rate dependency is used to describe the constitutive law at mesoscopic scale; and a finite element program is employed as a basic stress analysis tool. The simulator is firstly validated by simulating the dynamic spalling of a homogeneous rock bar and by comparing with the theoretical and experimental results. Then, the failure process of a Brazilian disk of rock subjected to static and dynamic loading is numerically simulated, and the numerical results are compared with the available experimental results. Particular attention is given to the typical failure patterns of the rock disk when the incident compressive stress waves with different amplitudes are applied. The numerical simulation also identifies the failure mechanisms of rock during dynamic failure processes that are closely related to the propagation of the stress wave.  相似文献   

20.
A biaxial compression test was performed on a sandstone specimen with a circular opening to simulate a loading-type failure around an underground excavation in brittle rock. The axial force and displacements were monitored throughout the failure process, and microcracking was detected by the acoustic emission technique. To model the observed damage zone around the opening, the distinct element computer program, particle flow code (PFC2D), was used. The numerical model consisted of several circular elements that can interact through contact stiffness, exhibit strength through contact bonds and particle friction, and develop damage through fracture of bonds. For the determination of micro-mechanical parameters needed in the calibration process of the computer program, only the macroscopic parameters of Young's modulus, Poisson's ratio and uniaxial compressive strength were used. It is shown that PFC2D was capable of simulating the localization behavior of the rock and the numerical model was able to reproduce the damage zone observed in the laboratory test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号