首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.  相似文献   

2.
3.
4.
5.
Methicillin-resistant Staphylococcus aureus (MRSA) is a troublesome pathogen that poses a global threat to public health. Shikonin (SKN) isolated from Lithospermum erythrorhizon (L. erythrorhizon) possesses a variety of biological activities. This study aims to explore the effect of the combined application of SKN and traditional antibiotics on the vitality of MRSA and the inherent antibacterial mechanism of SKN. The synergies between SKN and antibiotics against MRSA and its clinical strain have been demonstrated by the checkerboard assay and the time-kill assay. The effect of SKN on disrupting the integrity and permeability of bacterial cell membranes was verified by a nucleotide and protein leakage assay and a bacteriolysis assay. As determined by crystal violet staining, SKN inhibited the biofilm formation of clinical MRSA strains. The results of Western blot and qRT-PCR showed that SKN could inhibit the expression of proteins and genes related to drug resistance and S. aureus exotoxins. SKN inhibited the ability of RAW264.7 cells to release the pro-inflammatory cytokines TNF-α and IL-6, as measured by ELISA. Our findings suggest that SKN has the potential to be developed as a promising alternative for the treatment of MRSA infections.  相似文献   

6.
A nucleic acid aptamer that specifically recognizes methicillin-resistant Staphylococcus aureus (MRSA) has been immobilized on magnetic nanoparticles to capture the target bacteria prior to mass spectrometry analysis. After the MRSA species were captured, they were further eluted from the nanoparticles and identified using matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). The combination of aptamer-based capture/enrichment and MS analysis of microorganisms took advantage of the selectivity of both techniques and should enhance the accuracy of MRSA identification. The capture and elution efficiencies for MRSA were optimized by examining factors such as incubation time, temperature, and elution solvents. The aptamer-modified magnetic nanoparticles showed a capture rate of more than 90% under the optimized condition, whereas the capture rates were less than 11% for non-target bacteria. The as-prepared nanoparticles exhibited only a 5% decrease in the capture rate and a 9% decrease in the elution rate after 10 successive cycles of utilization. Most importantly, the aptamer-modified nanoparticles revealed an excellent selectivity towards MRSA in bacterial mixtures. The capture of MRSA at a concentration of 102 CFU/mL remained at a good percentage of 82% even when the other two species were at 104 times higher concentration (106 CFU/mL). Further, the eluted MRSA bacteria were successfully identified using MALDI mass spectrometry.  相似文献   

7.
The herbal plant Angelica gigas (A. gigas) has been used in traditional medicine in East Asian countries, and its chemical components are reported to have many pharmacological effects. In this study, we showed that a bioactive ingredient of A. gigas modulates the functional activity of macrophages and investigated its effect on inflammation using a sepsis model. Among 12 different compounds derived from A. gigas, decursinol angelate (DA) was identified as the most effective in suppressing the induction of TNF-α and IL-6 in murine macrophages. When mice were infected with a lethal dose of methicillin-resistant Staphylococcus aureus (MRSA), DA treatment improved the mortality and bacteremia, and attenuated the cytokine storm, which was associated with decreased CD38+ macrophage populations in the blood and liver. In vitro studies revealed that DA inhibited the functional activation of macrophages in the expression of pro-inflammatory mediators in response to microbial infection, while promoting the bacterial killing ability with an increased production of reactive oxygen species. Mechanistically, DA treatment attenuated the NF-κB and Akt signaling pathways. Intriguingly, ectopic expression of an active mutant of IKK2 released the inhibition of TNF-α production by the DA treatment, whereas the inhibition of Akt resulted in enhanced ROS production. Taken together, our experimental evidence demonstrated that DA modulates the functional activities of pro-inflammatory macrophages and that DA could be a potential therapeutic agent in the management of sepsis.  相似文献   

8.
The interaction between tumor surface-expressed PDL1 and immune cell PD1 for the evasion of antitumor immunity is well established and is targeted by FDA-approved anti-PDL1 and anti-PD1 antibodies. Nonetheless, recent studies highlight the immunopathogenicity of tumor-intrinsic PDL1 signals that can contribute to the resistance to targeted small molecules, cytotoxic chemotherapy, and αPD1 immunotherapy. As genetic PDL1 depletion is not currently clinically tractable, we screened FDA-approved drugs to identify those that significantly deplete tumor PDL1. Among the candidates, we identified the β-lactam cephalosporin antibiotic cefepime as a tumor PDL1-depleting drug (PDD) that increases tumor DNA damage and sensitivity to DNA-damaging agents in vitro in distinct aggressive mouse and human cancer lines, including glioblastoma multiforme, ovarian cancer, bladder cancer, and melanoma. Cefepime reduced tumor PDL1 post-translationally through ubiquitination, improved DNA-damaging-agent treatment efficacy in vivo in immune-deficient and -proficient mice, activated immunogenic tumor STING signals, and phenocopied specific genetic PDL1 depletion effects. The β-lactam ring and its antibiotic properties did not appear contributory to PDL1 depletion or to these treatment effects, and the related cephalosporin ceftazidime produced similar effects. Our findings highlight the rapidly translated potential for PDDs to inhibit tumor-intrinsic PDL1 signals and improve DNA-damaging agents and immunotherapy efficacy.  相似文献   

9.
Herein, we report antibacterial and antifungal evaluation of a series of previously prepared (+)-tanikolide analogues. One analogue, (4S,6S)-4-methyltanikolide, displayed promising anti-methicillin-resistant Staphylococcus aureus activity with a MIC of 12.5 µg/mL. Based on the antimicrobial properties of the structurally related (−)-malyngolide, two further analogues (4S,6S)-4-methylmalyngolide and (4R,6S)-4-methylmalyngolide bearing a shortened n-nonyl alkyl side chain were prepared in the present study using a ZrCl4-catalysed deprotection/cyclisation as the key step in their asymmetric synthesis. When these were tested for activity against anti-methicillin-resistant Staphylococcus aureus, the MIC increased to 50 µg/mL.  相似文献   

10.
The consumption of carotenoid-rich vegetables such as tomatoes and tomato sauces is associated with reduced risk of several chronic diseases. The predominant carotenoids in tomato products are in the (all-E) configuration, but (Z) isomers can be formed during thermal processing. The effect of cooking time (15, 30, 45 and 60 min) and the addition of extra virgin olive oil (5% and 10%) on the carotenoid extractability of tomato sauces was monitored using liquid chromatography-tandem mass spectrometry (LC-ESI-MS/MS) and LC-ultraviolet detection (LC-UV). The thermal treatment and the addition of extra virgin olive oil increased the levels of antioxidant activity, total carotenoids, Z-lycopene isomers, α-carotene and β-carotene. These results are of particular nutritional benefit since higher lycopene intake has been associated with a reduced risk of lethal prostate and a reduction of prostate-specific antigen (PSA) levels. Moreover, β-carotene has been reported to suppress the up-regulation of heme oxygenase-1 gene expression in a dose dependent manner and to suppress UVA-induced HO-1 gene expression in cultured FEK4.  相似文献   

11.
This paper’s main objective is to show that many different factors must be considered when solving stereochemical problems to avoid misleading conclusions and obtain conclusive results from the analysis of spectroscopic properties. Particularly in determining the absolute configuration, the use of chiroptical methods is crucial, especially when other techniques, including X-ray crystallography, fail, are not applicable, or give inconclusive results. Based on various β-lactam derivatives as models, we show how to reliably determine their absolute configuration (AC) and preferred conformation from circular dichroism (CD) spectra. Comprehensive CD analysis, employing both approaches, i.e., traditional with their sector and helicity rules, and state-of-the-art supported by quantum chemistry (QC) calculations along with solvation models for both electronic (ECD) and vibrational (VCD) circular dichroism ranges, allows confident defining stereochemistry of the β-lactams studied. Based on an in-depth analysis of the results, we have shown that choosing a proper chiroptical method/s strictly depends on the specific case and certain structural features.  相似文献   

12.
Urinary tract infections (UTIs) represent a health problem of the first magnitude since they affect large segments of the population, cause increased mortality and comorbidity, and have a high incidence of relapse. Therefore, UTIs cause a major socioeconomic concern. Current antibiotic treatments have various limitations such as the appearance of resistance to antibiotics, nephrotoxicity, and side effects such as gastrointestinal problems including microbiota alterations that contribute to increasing antibiotic resistance. In this context, Itxasol© has emerged, approved as an adjuvant for the treatment of UTIs. Designed with biomimetic principles, it is composed of arbutin, umbelliferon, and N-acetyl cysteine. In this work, we review the activities of these three compounds concerning the changes they produce in the expression of bacterial genes and those related to inflammation as well as assess how they are capable of affecting the DNA of bacteria and fungi.  相似文献   

13.
Vitiligo is a common chronic dermatological abnormality that afflicts tens of millions of people. Furocoumarins isolated from Uygur traditional medicinal material Psoralen corylifolia L. have been proven to be highly effective for the treatment of vitiligo. Although many furocoumarin derivatives with anti-vitiligo activity have been synthesized, their targets with respect to the disease are still ambiguous. Fortunately, the JAKs were identified as potential targets for the disease and its inhibitors have been proved to be effective in the treatment of vitiligo in many clinical trials. Thus, sixty-five benzene sulfonate and benzoate derivatives of furocoumarins (7a–7ad, 8a–8ag) with superior anti-vitiligo activity targeting JAKs were designed and synthesized based on preliminary research. The SAR was characterized after the anti-vitiligo-activity evaluation in B16 cells. Twenty-two derivatives showed more potent effects on melanin synthesis in B16 cells than the positive control (8-MOP). Among them, compounds 7y and 8 not only could increase melanin content, but they also improved the catecholase activity of tyrosinase in a concentration-dependent manner. The docking studies indicated that they were able to interact with amino acid residues in JAK1 and JAK2 via hydrogen bonds. Furthermore, candidate 8 showed a moderate inhibition of CXCL−10, which plays an important role in JAK–STAT signaling. The RT-PCR and Western blotting analyses illustrated that compounds 7y and 8 promoted melanogenesis by activating the p38 MAPK and Akt/GSK-3β/β-catenin pathways, as well as increasing the expressions of the MITF and tyrosinase-family genes. Finally, furocoumarin derivative 8 was recognized as a promising candidate for the fight against the disease and worthy of further research in vivo.  相似文献   

14.
Wnt signaling plays an important role in embryogenesis and adult stem cell homeostasis. Its diminished activation is implicated in osteoporosis and degenerative neural diseases. However, systematic administration of Wnt-signaling agonists carries risk, as aberrantly activated Wnt/β-catenin signaling is linked to cancer. Therefore, technologies for local modulation and control of Wnt signaling targeted to specific sites of disease or degeneration have potential therapeutic value in the treatment of degenerative diseases. We reported a facile approach to locally activate the canonical Wnt signaling cascade using nanomagnetic actuation or ligand immobilized platforms. Using a human embryonic kidney (HEK293) Luc-TCF/LEF reporter cell line, we demonstrated that targeting the cell membrane Wnt receptor, Frizzled 2, with peptide-tagged magnetic nanoparticles (MNPs) triggered canonical Wnt signaling transduction when exposed to a high-gradient, time-varying magnetic field, and the induced TCF/LEF signal transduction was shown to be avidity-dependent. We also demonstrated that the peptide retained signaling activity after functionalization onto glass surfaces, providing a versatile platform for drug discovery or recreation of the cell niche. In conclusion, these results showed that peptide-mediated Wnt signaling kinetics depended not only on ligand concentration but also on the presentation method of the ligand, which may be further modulated by magnetic actuation. This has important implications when designing future therapeutic platforms involving Wnt mimetics.  相似文献   

15.
16.
Since the effect of MFs (magnetic fields) on various biological systems has been studied, different results have been obtained from an insignificant effect of weak MFs on the disruption of the circadian clock system. On the other hand, magnetic fields, electromagnetic fields, or electric fields are used in medicine. The presented study was conducted to determine whether a low-frequency RMF (rotating magnetic field) with different field parameters could evoke the cellular response in vitro and is possible to modulate the cellular response. The cellular metabolic activity, ROS and Ca2+ concentration levels, wound healing assay, and gene expression analyses were conducted to evaluate the effect of RMF. It was shown that different values of magnetic induction (B) and frequency (f) of RMF evoke a different response of cells, e.g., increase in the general metabolic activity may be associated with the increasing of ROS levels. The lower intracellular Ca2+ concentration (for 50 Hz) evoked the inability of cells to wound closure. It can be stated that the subtle balance in the ROS level is crucial in the wound for the effective healing process, and it is possible to modulate the cellular response to the RMF in the context of an in vitro wound healing.  相似文献   

17.
18.
Fibrosis is characterized by excessive production of disorganized collagen- and fibronectin-rich extracellular matrices (ECMs) and is driven by the persistence of myofibroblasts within tissues. A key protein contributing to myofibroblast differentiation is extra domain A fibronectin (EDA-FN). We sought to target and interfere with interactions between EDA-FN and its integrin receptors to effectively inhibit profibrotic activity and myofibroblast formation. Molecular docking was used to assist in the design of a blocking polypeptide (antifibrotic 38-amino-acid polypeptide, AF38Pep) for specific inhibition of EDA-FN associations with the fibroblast-expressed integrins α4β1 and α4β7. Blocking peptides were designed and evaluated in silico before synthesis, confirmation of binding specificity, and evaluation in vitro. We identified the high-affinity EDA-FN C-C′ loop binding cleft within integrins α4β1 and α4β7. The polypeptide with the highest predicted binding affinity, AF38Pep, was synthesized and could achieve specific binding to myofibroblast fibronectin-rich ECM and EDA-FN C-C′ loop peptides. AF38Pep demonstrated potent myofibroblast inhibitory activity at 10 µg/mL and was not cytotoxic. Treatment with AF38Pep prevented integrin α4β1-mediated focal adhesion kinase (FAK) activation and early signaling through extracellular-signal-regulated kinases 1 and 2 (ERK1/2), attenuated the expression of pro-matrix metalloproteinase 9 (MMP9) and pro-MMP2, and inhibited collagen synthesis and deposition. Immunocytochemistry staining revealed an inhibition of α-smooth muscle actin (α-SMA) incorporation into actin stress fibers and attenuated cell contraction. Increases in the expression of mRNA associated with fibrosis and downstream from integrin signaling were inhibited by treatment with AF38Pep. Our study suggested that AF38Pep could successfully interfere with EDA-FN C-C′ loop-specific integrin interactions and could act as an effective inhibitor of fibroblast of myofibroblast differentiation.  相似文献   

19.
Neonicotinoid insecticides are nicotine-derived molecules which exert acute neurotoxic effects over the insect central nervous system by activating nicotinic acetylcholine receptors (nAChRs). However, these receptors are also present in the mammalian central and peripheral nervous system, where the effects of neonicotinoids are faintly known. In mammals, cholinergic synapses are crucial for the control of vascular tone, blood pressure and skeletal muscle contraction. We therefore hypothesized that neonicotinoids could affect cholinergic networks in mammals and sought to highlight functional consequences of acute intoxication in rats with sub-lethal concentrations of the highly used acetamiprid (ACE) and clothianidin (CLO). In this view, we characterized their electrophysiological effects on rat α3β4 nAChRs, knowing that it is predominantly expressed in ganglia of the vegetative nervous system and the adrenal medulla, which initiates catecholamine secretion. Both molecules exhibited a weak agonist effect on α3β4 receptors. Accordingly, their influence on epinephrine secretion from rat adrenal glands was also weak at 100 μM, but it was stronger at 500 μM. Challenging ACE or CLO together with nicotine (NIC) ended up with paradoxical effects on secretion. In addition, we measured the rat arterial blood pressure (ABP) in vivo by arterial catheterization. As expected, NIC induced a significant increase in ABP. ACE and CLO did not affect the ABP in the same conditions. However, simultaneous exposure of rats to both NIC and ACE/CLO promoted an increase of ABP and induced a biphasic response. Modeling the interaction of ACE or CLO on α3β4 nAChR is consistent with a binding site located in the agonist pocket of the receptor. We present a transversal experimental approach of mammal intoxication with neonicotinoids at different scales, including in vitro, ex vivo, in vivo and in silico. It paves the way of the acute and chronic toxicity for this class of insecticides on mammalian organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号