首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human nasopharyngeal carcinoma (NPC) is a highly invasive cancer associated with proinflammation. Caspase-12 (Casp12), an inflammatory caspase, is implicated in the regulation of NF-κB-mediated cellular invasion via the modulation of the IκBα protein in NPC cells. However, the effect mechanisms of Casp12 need to be elucidated. NPC cells were transfected with the full length of human Casp12 cDNA (pC12) and the effect of human Casp12 (hCasp12) on the NF-κB activity was investigated. We found ectopic expression of hCasp12 increased the NF-κB activity accompanied by an increased p-IκBα expression and a decreased IκBα expression. Treatment of BMS, a specific IKK inhibitor, and pC12-transfected cells markedly decreased the NF-κB activity and ameliorated the expression level of IκBα reduced by hCasp12. Co-immunoprecipitation assays validated the physical interaction of hCasp12 with IKKα/β, but not with NEMO. Furthermore, the NF-κB activity of ΔCasp12-Q (a mutated catalytic of hCasp12) transfected cells was concentration-dependently induced, but lower than that of hCasp12-transfected cells. Importantly, the hCasp12-mediated NF-kB activity was enhanced by TNFα stimulation. That indicated a role of the catalytic motif of hCasp12 in the regulation of the NF-κB activity. This study indicated hCasp12 activated the NF-κB pathway through the activation of IKK in human NPC cells.  相似文献   

2.
Inflammasomes are a group of intracellular multiprotein platforms that play important roles in immune systems. Benzyl isothiocyanate (BITC) is a constituent of cruciferous plants and has been confirmed to exhibit various biological activities. The modulatory effects of BITC on inflammasome-mediated interleukin (IL)-1β expression and its regulatory mechanisms in Pseudomonas aeruginosa (P. aeruginosa) LPS/ATP-stimulated THP-1 cells was investigated. Monocytic THP-1 cells were treated with phorbol myristate acetate (PMA) to induce differentiation into macrophages. Enzyme-linked immunosorbent assays (ELISA) were performed to measure the levels of IL-1β produced in P. aeruginosa LPS/ATP-exposed THP-1 cells. Western blotting was performed to examine the BITC modulatory mechanisms in inflammasome-mediated signaling pathways. BITC inhibited IL-1β production in P. aeruginosa LPS/ATP-induced THP-1 cells. BITC also inhibited activation of leucine-rich repeat protein-3 (NLRP3) and caspase-1 in P. aeruginosa LPS/ATP-induced THP-1 cells. Furthermore, we show that mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation in P. aeruginosa LPS was attenuated by BITC. These BITC-mediated modulatory effects on IL-1β production may have therapeutic potential for inflammasome-mediated disorders such as a nasal polyp.  相似文献   

3.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3–5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.  相似文献   

4.
Persistent inflammatory reactions in microglial cells are strongly associated with neurodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid, has been found to improve inflammatory conditions in several animal models. It has also been observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study, we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells. Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide (LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR, while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins, were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the LPS-induced increase in the mRNA levels of Il-1β, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH inhibited the phosphorylation of TAK1, IKKα/β, and NF-κB p65 proteins as well as NF-κB nuclear translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB signaling pathway.  相似文献   

5.
Short-chain fatty acid (SCFA) acetate, a byproduct of dietary fiber metabolism by gut bacteria, has multiple immunomodulatory functions. The anti-inflammatory role of acetate is well documented; however, its effect on monocyte chemoattractant protein-1 (MCP-1) production is unknown. Similarly, the comparative effect of SCFA on MCP-1 expression in monocytes and macrophages remains unclear. We investigated whether acetate modulates TNFα-mediated MCP-1/CCL2 production in monocytes/macrophages and, if so, by which mechanism(s). Monocytic cells were exposed to acetate with/without TNFα for 24 h, and MCP-1 expression was measured. Monocytes treated with acetate in combination with TNFα resulted in significantly greater MCP-1 production compared to TNFα treatment alone, indicating a synergistic effect. On the contrary, treatment with acetate in combination with TNFα suppressed MCP-1 production in macrophages. The synergistic upregulation of MCP-1 was mediated through the activation of long-chain fatty acyl-CoA synthetase 1 (ACSL1). However, the inhibition of other bioactive lipid enzymes [carnitine palmitoyltransferase I (CPT I) or serine palmitoyltransferase (SPT)] did not affect this synergy. Moreover, MCP-1 expression was significantly reduced by the inhibition of p38 MAPK, ERK1/2, and NF-κB signaling. The inhibition of ACSL1 attenuated the acetate/TNFα-mediated phosphorylation of p38 MAPK, ERK1/2, and NF-κB. Increased NF-κB/AP-1 activity, resulting from acetate/TNFα co-stimulation, was decreased by ACSL1 inhibition. In conclusion, this study demonstrates the proinflammatory effects of acetate on TNF-α-mediated MCP-1 production via the ACSL1/MAPK/NF-κB axis in monocytic cells, while a paradoxical effect was observed in THP-1-derived macrophages.  相似文献   

6.
Epidermal growth factor receptor (EGFR) is a receptor tyrosine kinase that instigates several signaling cascades, including the NF-κB signaling pathway, to induce cell differentiation and proliferation. Overexpression and mutations of EGFR are found in up to 30% of solid tumors and correlate with a poor prognosis. Although it is known that EGFR-mediated NF-κB activation is involved in tumor development, the signaling axis is not well elucidated. Here, we found that plakophilin 2 (PKP2) and the linear ubiquitin chain assembly complex (LUBAC) were required for EGFR-mediated NF-κB activation. Upon EGF stimulation, EGFR recruited PKP2 to the plasma membrane, and PKP2 bridged HOIP, the catalytic E3 ubiquitin ligase in the LUBAC, to the EGFR complex. The recruitment activated the LUBAC complex and the linear ubiquitination of NEMO, leading to IκB phosphorylation and subsequent NF-κB activation. Furthermore, EGF-induced linear ubiquitination was critical for tumor cell proliferation and tumor development. Knockout of HOIP impaired EGF-induced NF-κB activity and reduced cell proliferation. HOIP knockout also abrogated the growth of A431 epidermal xenograft tumors in nude mice by more than 70%. More importantly, the HOIP inhibitor, HOIPIN-8, inhibited EGFR-mediated NF-κB activation and cell proliferation of A431, MCF-7, and MDA-MB-231 cancer cells. Overall, our study reveals a novel linear ubiquitination signaling axis of EGFR and that perturbation of HOIP E3 ubiquitin ligase activity is potential targeted cancer therapy.  相似文献   

7.
8.
Resveratrol, a natural compound in grapes and red wine, has drawn attention due to potential cardiovascular-related health benefits. However, its effect on vascular inflammation at physiologically achievable concentrations is largely unknown. In this study, resveratrol in concentrations as low as 1 μm suppressed TNF-α-induced monocyte adhesion to human EA.hy926 endothelial cells (ECs), a key event in the initiation and development of atherosclerosis. Low concentrations of resveratrol (0.25–2 μm) also significantly attenuated TNF-α-stimulated mRNA expressions of MCP-1/CCL2 and ICAM-1, which are vital mediators of EC-monocyte adhesion molecules and cytokines for cardiovascular plaque formation. Additionally, resveratrol diminished TNF-α-induced IκB-α degradation and subsequent nuclear translocation of NF-κB p65 in ECs. In the animal study, resveratrol supplementation in diet significantly diminished TNF-α-induced increases in circulating levels of adhesion molecules and cytokines, monocyte adhesion to mouse aortic ECs, F4/80-positive macrophages and VCAM-1 expression in mice aortas and restored the disruption in aortic elastin fiber caused by TNF-α treatment. The animal study also confirmed that resveratrol blocks the activation of NF-κB In Vivo. In conclusion, resveratrol at physiologically achievable concentrations displayed protective effects against TNF-α-induced vascular endothelial inflammation in vitro and In Vivo. The ability of resveratrol in reducing inflammation may be associated with its role as a down-regulator of the NF-κB pathway.  相似文献   

9.
Levels of O-GlcNAc transferase (OGT) and hyper-O-GlcNAcylation expression levels are associated with cancer pathogenesis. This study aimed to find conditions that maximize the therapeutic effect of cancer and minimize tissue damage by combining an OGT inhibitor (OSMI-1) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). We found that OSMI-1 treatment in HCT116 human colon cancer cells has a potent synergistic effect on TRAIL-induced apoptosis signaling. Interestingly, OSMI-1 significantly increased TRAIL-mediated apoptosis by increasing the expression of the cell surface receptor DR5. ROS-induced endoplasmic reticulum (ER) stress by OSMI-1 not only upregulated CHOP-DR5 signaling but also activated Jun-N-terminal kinase (JNK), resulting in a decrease in Bcl2 and the release of cytochrome c from mitochondria. TRAIL induced the activation of NF-κB and played a role in resistance as an antiapoptotic factor. During this process, O-GlcNAcylation of IκB kinase (IKK) and IκBα degradation occurred, followed by translocation of p65 into the nucleus. However, combination treatment with OSMI-1 counteracted the effect of TRAIL-mediated NF-κB signaling, resulting in a more synergistic effect on apoptosis. Therefore, the combined treatment of OSMI-1 and TRAIL synergistically increased TRAIL-induced apoptosis through caspase-8 activation. Conclusively, OSMI-1 potentially sensitizes TRAIL-induced cell death in HCT116 cells through the blockade of NF-κB signaling and activation of apoptosis through ER stress response.  相似文献   

10.
11.
Quercetin 3-O-β-D-glucuronide (Q-3-G), the glucuronide conjugate of quercetin, has been reported as having anti-inflammatory properties in the lipopolysaccharide-stimulated macrophages, as well as anticancer and antioxidant properties. Unlike quercetin, which has been extensively described to possess a wide range of pharmacological activities including skin protective effects, the pharmacological benefits and mechanisms Q-3-G in the skin remained to be elucidated. This study focused on characterizing the skin protective properties, including anti-inflammatory and antioxidant properties, of Q-3-G against UVB-induced or H2O2-induced oxidative stress, the hydration effects, and antimelanogenesis activities using human keratinocytes (HaCaT) and melanoma (B16F10) cells. Q-3-G down-regulated the expression of the pro-inflammatory gene and cytokine such as cyclooxygenase-2 (COX-2) and tumor necrosis factor (TNF)-α in H2O2 or UVB-irradiated HaCaT cells. We also showed that Q-3-G exhibits an antioxidant effect using free radical scavenging assays, flow cytometry, and an increased expression of nuclear factor erythroid 2- related factor 2 (Nrf2). Q-3-G reduced melanin production in α-melanocyte-stimulating hormone (α-MSH)-induced B16F10 cells. The hydration effects and mechanisms of Q-3-G were examined by evaluating the moisturizing factor-related genes, such as transglutaminase-1 (TGM-1), filaggrin (FLG), and hyaluronic acid synthase (HAS)-1. In addition, Q-3-G increased the phosphorylation of c-Jun, Jun N-terminal kinase (JNK), Mitogen-activated protein kinase (MAPK) kinase 4 (MKK4), and TAK1, involved in the MAPKs/AP-1 pathway, and the phosphorylation of IκBα, IκB kinase (IKK)-α, Akt, and Src, involved in the NF-κB pathway. Taken together, we have demonstrated that Q-3-G exerts anti-inflammatory, antioxidant, moisturizing, and antimelanogenesis properties in human keratinocytes and melanoma cells through NF-κB and AP-1 pathways.  相似文献   

12.
Over half of older patients with acute myeloid leukemia (AML) do not respond to cytotoxic chemotherapy, and most responders relapse because of drug resistance. Cytarabine is the main drug used for the treatment of AML. Intensive treatment with high-dose cytarabine can increase the overall survival rate and reduce the relapse rate, but it also increases the likelihood of drug-related side effects. To optimize cytarabine treatment, understanding the mechanism underlying cytarabine resistance in leukemia is necessary. In this study, the gene expression profiles of parental HL60 cells and cytarabine-resistant HL60 (R-HL60) cells were compared through gene expression arrays. Then, the differential gene expression between parental HL60 and R-HL60 cells was measured using KEGG software. The expression of numerous genes associated with the nuclear factor κB (NF-κB) signaling pathway changed during the development of cytarabine resistance. Proteasome inhibitors inhibited the activity of non-canonical NF-κB signaling pathway and induced the apoptosis of R-HL60 cells. The study results support the application and possible mechanism of proteasome inhibitors in patients with relapsed or refractory leukemia.  相似文献   

13.
14.
Senescent cells secrete pro-inflammatory factors, and a hallmark feature of senescence is senescence-associated secretory phenotype (SASP). The aim of this study is to investigate the protein kinase CK2 (CK2) effects on SASP factors expression in cellular senescence and organism aging. Here CK2 down-regulation induced the expression of SASP factors, including interleukin (IL)-1β, IL-6, and matrix metalloproteinase (MMP) 3, through the activation of nuclear factor-κB (NF-κB) signaling in MCF-7 and HCT116 cells. CK2 down-regulation-mediated SIRT1 inactivation promoted the degradation of inhibitors of NF-κB (IκB) by activating the AKT-IκB kinase (IKK) axis and increased the acetylation of lysine 310 on RelA/p65, an important site for the activity of NF-κB. kin-10 (the ortholog of CK2β) knockdown increased zmp-1, -2, and -3 (the orthologs of MMP) expression in nematodes, but AKT inhibitor triciribine and SIRT activator resveratrol significantly abrogated the increased expression of these genes. Finally, antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760 suppressed CK2α down-regulation, activation of the AKT-IKK-NF-κB axis, RelA/p65 acetylation, and expression of SASP genes in cells treated with lipopolysaccharide. Therefore, this study indicated that CK2 down-regulation induces the expression of SASP factors through NF-κB activation, which is mediated by both activation of the SIRT1-AKT-IKK axis and RelA/p65 acetylation, suggesting that the mixture of the four miRNA inhibitors can be used as anti-inflammatory agents.  相似文献   

15.
Doxorubicin (DOX) is a well-known and effective antineoplastic agent of the anthracycline family. But, multiple organ toxicities compromise its invaluable therapeutic usage. Among many toxicity types, nephrotoxicity is one of the major concerns. In recent years many approaches, including bioactive agents of natural origin, have been explored to provide protective effects against chemotherapy-related complications. α-Bisabolol is a naturally occurring monocyclic sesquiterpene alcohol identified in the essential oils of various aromatic plants and possesses a wide range of pharmacological properties such as antioxidant, anti-inflammatory, analgesic, cardioprotective, antibiotic, anti-irritant, and anticancer activities. The present study aimed to evaluate the effects of α-Bisabolol on DOX-induced nephrotoxicity in Wistar male albino rats. Nephrotoxicity was induced in rats by injecting a single dose of DOX (12.5 mg/kg, i.p.), and the test compound, α-Bisabolol (25 mg/kg) was administered intraperitoneally along with DOX as a co-treatment daily for 5 days. DOX-injected rats showed reduction in body weight along with a concomitant fall in antioxidants and increased lipid peroxidation in the kidney. DOX-injection also increased levels/expressions of proinflammatory cytokines namely tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and inflammatory mediators like inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) and activated nuclear factor kappa-B (NF-κB)/mitogen-activated protein kinases (MAPK) signaling in the kidney tissues. DOX also triggered apoptotic cell death, evidenced by the increased expression of pro-apoptotic markers like BCL2-Associated X Protein (Bax), cleaved caspase-3, caspase- 9, and cytochrome-C) and a decrease in the expressions of anti-apoptotic markers namely B-cell lymphoma 2 (Bcl2) and B-cell lymphoma-extra large (Bcl-xL) in the kidney. These biochemical alterations were additionally supported by light microscopic findings, which revealed structural alterations in the kidney. However, treatment with α-Bisabolol prevented body weight loss, restored antioxidants, mitigated lipid peroxidation, and inhibited the rise in proinflammatory cytokines, as well as favorably modulated the expressions of NF-κB/MAPK signaling and apoptosis markers in DOX-induced nephrotoxicity. Based on the results observed, it can be concluded that α-Bisabolol has potential to attenuate DOX-induced nephrotoxicity by inhibiting oxidative stress and inflammation mediated activation of NF-κB/MAPK signaling alongwith intrinsic pathway of apoptosis in rats. The study findings are suggestive of protective potential of α-Bisabolol in DOX associated nephrotoxicity and this could be potentially useful in minimizing the adverse effects of DOX and may be a potential agent or adjuvant for renal protection.  相似文献   

16.
Sepsis is characterized by multiple-organ dysfunction caused by the dysregulated host response to infection. Until now, however, the role of the Wnt signaling has not been fully characterized in multiple organs during sepsis. This study assessed the suppressive effect of a Wnt signaling inhibitor, Wnt-C59, in the kidney, lung, and liver of lipopolysaccharide-induced endotoxemic mice, serving as an animal model of sepsis. We found that Wnt-C59 elevated the survival rate of these mice and decreased their plasma levels of proinflammatory cytokines and organ-damage biomarkers, such as BUN, ALT, and AST. The Wnt/β-catenin and NF-κB pathways were stimulated and proinflammatory cytokines were upregulated in the kidney, lung, and liver of endotoxemic mice. Wnt-C59, as a Wnt signaling inhibitor, inhibited the Wnt/β-catenin pathway, and its interaction with the NF-κB pathway, which resulted in the inhibition of NF-κB activity and proinflammatory cytokine expression. In multiple organs of endotoxemic mice, Wnt-C59 significantly reduced the β-catenin level and interaction with NF-κB. Our findings suggest that the anti-endotoxemic effect of Wnt-C59 is mediated via reducing the interaction between β-catenin and NF-κB, consequently suppressing the associated cytokine upregulation in multiple organs. Thus, Wnt-C59 may be useful for the suppression of the multiple-organ dysfunction during sepsis.  相似文献   

17.
18.
19.
Hypoxia-induced neuroinflammation in stroke, neonatal hypoxic encephalopathy, and other diseases subsequently contributes to neurological damage and neuronal diseases. Microglia are the primary neuroimmune cells that play a crucial role in cerebral inflammation. Epigallocatechin gallate (EGCG) has a protective antioxidant and anti-inflammatory effects against neuroinflammation. However, the effects of EGCG on hypoxia-induced inflammation in microglia and the underlying mechanism remain unclear. In this study, we investigated whether EGCG might have a protective effect against hypoxia injury in microglia by treatment with CoCl2 to establish a hypoxic model of BV2 microglia cells following EGCG pre-treatment. An exposure of cells to CoCl2 caused an increase in inflammatory mediator interleukin (IL)-6, inducible nitric oxide synthase (iNOS), and cyclooxygenase (COX)-2 expression, which were significantly ameliorated by EGCG via inhibition of NF-κB pathway. In addition, EGCG attenuated the expression of hypoxia-inducible factor (HIF)-1α and the generation of ROS in hypoxic BV2 cells. Furthermore, the suppression of hypoxia-induced IL-6 production by EGCG was mediated via the inhibition of HIF-1α expression and the suppression of ROS generation in BV2 cells. Notably, EGCG increased the Nrf-2 levels and HO-1 levels in the presence of CoCl2. Additionally, EGCG suppressed hypoxia-induced apoptosis of BV2 microglia with cleavage of poly (ADP-ribose) polymerase (PARP) and caspase-3. In summary, EGCG protects microglia from hypoxia-induced inflammation and oxidative stress via abrogating the NF-κB pathway as well as activating the Nrf-2/HO-1 pathway.  相似文献   

20.
Adiponectin is an adipocytokine with anti-inflammatory and anticancer properties. Our previous study has shown that blood adiponectin levels were inversely correlated to the risk of nasopharyngeal carcinoma (NPC), and that adiponectin could directly suppress the proliferation of NPC cells. However, the effect of adiponectin on NPC metastasis remains unknown. Here, we revealed in clinical studies that serum adiponectin level was inversely correlated with tumor stage, recurrence, and metastasis in NPC patients, and that low serum adiponectin level also correlates with poor metastasis-free survival. Coculture with recombinant adiponectin suppressed the migration and invasion of NPC cells as well as epithelial–mesenchymal transition (EMT). In addition, recombinant adiponectin dampened the activation of NF-κB and STAT3 signaling pathways induced by adipocyte-derived proinflammatory factors such as leptin, IL-6, and TNF-α. Pharmacological activation of adiponectin receptor through its specific agonist, AdipoRon, largely stalled the metastasis of NPC cells. Taken together, these findings demonstrated that adiponectin could not only regulate metabolism and inhibit cancer growth, but also suppress the metastasis of NPC. Pharmacological activation of adiponectin receptor may be a promising therapeutic strategy to stall NPC metastasis and extend patients’ survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号