首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Rhodococcus equi (R. equi) is a Gram-positive coccobacillus that causes pneumonia in foals of less than 3 months, which have the ability of replication in macrophages. The ability of R. equi persist in macrophages is dependent on the virulence plasmid pVAPA. Gram-positive extracellular vesicles (EVs) carry a variety of virulence factors and play an important role in pathogenic infection. There are few studies on R. equi-derived EVs (R. equi-EVs), and little knowledge regarding the mechanisms of how R. equi-EVs communicate with the host cell. In this study, we examine the properties of EVs produced by the virulence strain R. equi 103+ (103+-EVs) and avirulenct strain R. equi 103 (103-EVs). We observed that 103+-EVs and 103-EVs are similar to other Gram-positive extracellular vesicles, which range from 40 to 260 nm in diameter. The 103+-EVs or 103-EVs could be taken up by mouse macrophage J774A.1 and cause macrophage cytotoxicity. Incubation of 103+-EVs or 103-EVs with J774A.1 cells would result in increased expression levels of IL-1β, IL-6, and TNF-α. Moreover, the expression of TLR2, p-NF-κB, p-p38, and p-ERK were significantly increased in J774A.1 cells stimulated with R. equi-EVs. In addition, we presented that the level of inflammatory factors and expression of TLR2, p-NF-κB, p-p38, and p-ERK in J774A.1 cells showed a significant decreased when incubation with proteinase K pretreated-R. equi-EVs. Overall, our data indicate that R. equi-derived EVs are capable of mediating inflammatory responses in macrophages via TLR2-NF-κB/MAPK pathways, and R. equi-EVs proteins were responsible for TLR2-NF-κB/MAPK mediated inflammatory responses in macrophage. Our study is the first to reveal potential roles for R. equi-EVs in immune response in R. equi-host interactions and to compare the differences in macrophage inflammatory responses mediated by EVs derived from virulent strain R. equi and avirulent strain R. equi. The results of this study have improved our knowledge of the pathogenicity of R. equi.  相似文献   

2.
HSV-1 is a typical neurotropic virus that infects the brain and causes keratitis, cold sores, and occasionally, acute herpes simplex encephalitis (HSE). The large amount of proinflammatory cytokines induced by HSV-1 infection is an important cause of neurotoxicity in the central nervous system (CNS). Microglia, as resident macrophages in CNS, are the first line of defense against neurotropic virus infection. Inhibiting the excessive production of inflammatory cytokines in overactivated microglia is a crucial strategy for the treatment of HSE. In the present study, we investigated the effect of nicotinamide n-oxide (NAMO), a metabolite mainly produced by gut microbe, on HSV-1-induced microglial inflammation and HSE. We found that NAMO significantly inhibits the production of cytokines induced by HSV-1 infection of microglia, such as IL-1β, IL-6, and TNF-α. In addition, NAMO promotes the transition of microglia from the pro-inflammatory M1 type to the anti-inflammatory M2 type. More detailed studies revealed that NAMO enhances the expression of Sirtuin-1 and its deacetylase enzymatic activity, which in turn deacetylates the p65 subunit to inhibit NF-κB signaling, resulting in reduced inflammatory response and ameliorated HSE pathology. Therefore, Sirtuin-1/NF-κB axis may be promising therapeutic targets against HSV-1 infection-related diseases including HSE.  相似文献   

3.
Collagen XV (Col XV), a basement membrane (BM) component, is highly expressed in adipose tissue, and studies have found that Col XV is related to extracellular matrix (ECM) remodeling involving in adipose tissue fibrosis and inflammation. Furthermore, the ECM is essential for maintaining normal development and tissue function. In this study, we found that Col XV is related to the endoplasmic reticulum stress (ERS) and inflammation of adipose tissue. Moreover, we found that overexpression of Col XV in mice could cause macrophages to infiltrate white adipose tissue (iWAT). At the same time, the expression of the ERS sensor IRE1α (Inositol-Requiring Enzyme-1α) was significantly up-regulated, which intensified the inflammation of adipose tissue and the polarization of M1 macrophages after the overexpression of Col XV in mice. In addition, after overexpression of Col XV, the intracellular Ca2+ concentration was significantly increased. Using focal adhesion kinase (FAK) inhibitor PF573228, we found that PF-573228 inhibited the phosphorylation of FAK and reversed the upward trend of Col XV-induced protein expression levels of IRE1α, C/EBP-homologous protein (CHOP), and 78 kDa glucose-regulated protein (GRP78). After treatment with IRE1α inhibitor STF-083010, the results showed that the expression of adipocyte inflammation-related genes interleukin 6 (IL-6) and tumor necrosis factor α (TNFα) significantly were decreased. Our results demonstrate that Col XV induces ER-stress in adipocytes by activating the Integrinβ1/FAK pathway and disrupting the intracellular Ca2+ balance. At the same time, Col XV regulates the inflammation induced by ER stress in adipocytes by promoting IRE1α/XBP1 (X-Box binding protein 1) signaling. Our study provides new ideas for solving the problems of adipose tissue metabolism disorders caused by abnormal accumulation of ECM.  相似文献   

4.
Enhancing the phagocytosis of immune cells with medicines provides benefits to the physiological balance by removing foreign pathogens and apoptotic cells. The fungal immunomodulatory protein (FIP) possessing various immunopotentiation functions may be a good candidate for such drugs. However, the effect and mechanism of FIP on the phagocytic activity is limitedly investigated. Therefore, the present study determined effects of Cordyceps militaris immunomodulatory protein (CMIMP), a novel FIP reported to induce cytokines secretion, on the phagocytosis using three different types of models, including microsphere, Escherichia Coli and Candida albicans. CMIMP not only significantly improved the phagocytic ability (p < 0.05), but also enhanced the bactericidal activity (p < 0.05). Meanwhile, the cell size, especially the cytoplasm size, was markedly increased by CMIMP (p < 0.01), accompanied by an increase in the F-actin expression (p < 0.001). Further experiments displayed that CMIMP-induced phagocytosis, cell size and F-actin expression were alleviated by the specific inhibitor of TLR4 (p < 0.05). Similar results were observed in the treatment with the inhibitor of the NF-κB pathway (p < 0.05). In conclusion, it could be speculated that CMIMP promoted the phagocytic ability of macrophages through increasing F-actin expression and cell size in a TLR4-NF-κB pathway dependent way.  相似文献   

5.
Progressive loss and dysfunction of islet β-cells has not yet been solved in the treatment of diabetes. Regenerating protein (Reg) has been identified as a trophic factor which is demonstrated to be associated with pancreatic tissue regeneration. We previously produced recombinant Reg3α protein (rReg3α) and proved that it protects against acute pancreatitis in mice. Whether rReg3α protects islet β-cells in diabetes has been elusive. In the present study, rReg3α stimulated MIN6 cell proliferation and resisted STZ-caused cell death. The protective effect of rReg3α was also found in mouse primary islets. In BALB/c mice, rReg3α administration largely alleviated STZ-induced diabetes by the preservation of β-cell mass. The protective mechanism could be attributed to Akt/Bcl-2/-xL activation and GRP78 upregulation. Scattered insulin-expressing cells and clusters with small size, low insulin density, and exocrine distribution were observed and considered to be neogenic. In isolated acinar cells with wheat germ agglutinin (WGA) labeling, rReg3α treatment generated insulin-producing cells through Stat3/Ngn3 signaling, but these cells were not fully functional in response to glucose stimulation. Our results demonstrated that rReg3α resists STZ-induced β-cell death and promotes β-cell regeneration. rReg3α could serve as a potential drug for β-cell maintenance in anti-diabetic treatment.  相似文献   

6.
Delayed muscle development and impaired tissue repair are common occurrences in sheep reared for mutton. Therefore, understanding the regulatory mechanisms involved in muscle growth and development is critical for animal production. Skeletal muscle satellite cells (SMSCs) can simulate the proliferation and differentiation of muscle cells and could be induced to differentiate into myoblasts. β-hydroxy-β-methylbutyric acid (HMB) is an additive commonly used in animal production. This study examined the effect of HMB on myoblast injury repair using flow cytometry, EdU assay, RNA sequencing, Western blot, and ELISA. Our results showed that HMB could inhibit IL-17 expression and, in turn, inhibit NF-κB signaling. By acting on the downstream genes of NF-κB pathway IL-6, TNF-α and IL-1β, HMB inhibits the apoptosis and promotes the proliferation of myoblasts. The findings of this study provide insight into the mechanism by which HMB mediates myoblast injury repair in sheep.  相似文献   

7.
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS.  相似文献   

8.
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway.  相似文献   

9.
10.
We investigated the effects of adipose-derived extract (AE) on cultured chondrocytes and in vivo cartilage destruction. AE was prepared from human adipose tissues using a nonenzymatic approach. Cultured human chondrocytes were stimulated with interleukin-1 beta (IL-1β) with or without different concentrations of AE. The effects of co-treatment with AE on intracellular signaling pathways and their downstream gene and protein expressions were examined using real-time PCR, Western blotting, and immunofluorescence staining. Rat AE prepared from inguinal adipose tissues was intra-articularly delivered to the knee joints of rats with experimental osteoarthritis (OA), and the effect of AE on cartilage destruction was evaluated histologically. In vitro, co-treatment with IL-1β combined with AE reduced activation of the p38 and ERK mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of the p65 subunit of nuclear factor-kappa B (NF-κB), and subsequently downregulated the expressions of matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, IL-6, and IL-8, whereas it markedly upregulated the expression of IL-1 receptor type 2 (IL-1R2) in chondrocytes. Intra-articular injection of homologous AE significantly ameliorated cartilage destruction six weeks postoperatively in the rat OA model. These results suggested that AE may exert a chondroprotective effect, at least in part, through modulation of the IL-1β-induced inflammatory signaling pathway by upregulation of IL-1R2 expression.  相似文献   

11.
Inflammation is a multifaceted response of the immune system at the site of injury or infection caused by pathogens or stress via immune cells. Due to the adverse effects of chemical drugs, plant-based compounds are gaining interest in current research. Prunetinoside or prunetin-5-O-glucoside (PUG) is a plant-based active compound, which possesses anti-inflammatory effects on immune cells. In this study, we investigate the effect of PUG on mouse macrophage RAW264.7 cells with or without stimulation of lipopolysaccharide (LPS). Cytotoxicity results showed that PUG is non-cytotoxic to the cells and it reversed the cytotoxicity in LPS-stimulated cells. The levels of nitric oxide (NO) and interleukin-6 (IL-6) were determined using a NO detection kit and IL-6 ELISA kit, respectively, and showed a significant decrease in NO and IL-6 in PUG-treated cells. Western blot and qRT-PCR were performed for the expression of two important pro-inflammatory cytokines, COX2 and iNOS, and found that their expression was downregulated in a dose-dependent manner. Other pro-inflammatory cytokines, such as IL-1β, IL-6, and TNFα, had reduced mRNA expression after PUG treatment. Furthermore, a Western blot was performed to calculate the expression of NF-κB and MAPK pathway proteins. The results show that PUG administration dramatically reduced the phosphorylation of p-Iκbα, p-NF-κB 65, and p-JNK. Remarkably, after PUG treatment, p-P38 and p-ERK remain unchanged. Furthermore, docking studies revealed that PUG is covalently linked to NF-κB and suppresses inflammation. In conclusion, PUG exerted the anti-inflammatory mechanism by barring the NF-κB pathway and activating JNK. Thus, prunetinoside could be adopted as a therapeutic compound for inflammatory-related conditions.  相似文献   

12.
Interleukin (IL)-1β is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1β-induced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1β in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2, MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1β significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1β-induced NO release and mitochondrial dysfunction but not IL-1β-induced release of IL-6, PGE2, and MMP3. Enhancement of cAMP by forskolin reduced IL-1β-induced NO release and prevented IL-1β-induced mitochondrial impairment. Activation of AMPK increased IL-1β-induced NO production and the negative impact of IL-1β on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1β-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1β-induced NO release and mitochondrial dysfunction.  相似文献   

13.
14.
Osteoarthritis (OA) is a chronic disease affecting the whole joint, which still lacks a disease-modifying treatment. This suggests an incomplete understanding of underlying molecular mechanisms. The Wnt/β-catenin pathway is involved in different pathophysiological processes of OA. Interestingly, both excessive stimulation and suppression of this pathway can contribute to the pathogenesis of OA. microRNAs have been shown to regulate different cellular processes in different diseases, including the metabolic activity of chondrocytes and osteocytes. To bridge these findings, here we attempt to give a conclusive overview of microRNA regulation of the Wnt/β-catenin pathway in bone and cartilage, which may provide insights to advance the development of miRNA-based therapeutics for OA treatment.  相似文献   

15.
Angiogenesis is a process that drives breast cancer (BC) progression and metastasis, which is linked to the altered inflammatory process, particularly in triple-negative breast cancer (TNBC). In targeting inflammatory angiogenesis, natural compounds are a promising option for managing BC. Thus, this study was designed to determine the natural alkaloid sanguinarine (SANG) potential for its antiangiogenic and antimetastatic properties in triple-negative breast cancer (TNBC) cells. The cytotoxic effect of SANG was examined in MDA-MB-231 and MDA-MB-468 cell models at a low molecular level. In this study, SANG remarkably inhibited the inflammatory mediator chemokine CCL2 in MDA-MB-231 and MDA-MB-468 cells. Furthermore, qRT-PCR confirmed with Western analysis studies showed that mRNA CCL2 repression was concurrent with reducing its main regulator IKBKE and NF-κB signaling pathway proteins in both TNBC cell lines. The total ERK1/2 protein was inhibited in the more responsive MDA-MB-231 cells. SANG exhibited a higher potential to inhibit cell migration in MDA-MB-231 cells compared to MDA-MB-468 cells. Data obtained in this study suggest a unique antiangiogenic and antimetastatic effect of SANG in the MDA-MB-231 cell model. These effects are related to the compound’s ability to inhibit the angiogenic CCL2 and impact the ERK1/2 pathway. Therefore, SANG use may be recommended as a component of the therapeutic strategy for TNBC.  相似文献   

16.
In 3D bioprinting for cartilage regeneration, bioinks that support chondrogenic development are of key importance. Growth factors covalently bound in non-printable hydrogels have been shown to effectively promote chondrogenesis. However, studies that investigate the functionality of tethered growth factors within 3D printable bioinks are still lacking. Therefore, in this study, we established a dual-stage crosslinked hyaluronic acid-based bioink that enabled covalent tethering of transforming growth factor-beta 1 (TGF-β1). Bone marrow-derived mesenchymal stromal cells (MSCs) were cultured over three weeks in vitro, and chondrogenic differentiation of MSCs within bioink constructs with tethered TGF-β1 was markedly enhanced, as compared to constructs with non-covalently incorporated TGF-β1. This was substantiated with regard to early TGF-β1 signaling, chondrogenic gene expression, qualitative and quantitative ECM deposition and distribution, and resulting construct stiffness. Furthermore, it was successfully demonstrated, in a comparative analysis of cast and printed bioinks, that covalently tethered TGF-β1 maintained its functionality after 3D printing. Taken together, the presented ink composition enabled the generation of high-quality cartilaginous tissues without the need for continuous exogenous growth factor supply and, thus, bears great potential for future investigation towards cartilage regeneration. Furthermore, growth factor tethering within bioinks, potentially leading to superior tissue development, may also be explored for other biofabrication applications.  相似文献   

17.
Acute pancreatitis (AP) is an inflammatory disorder, involving acinar cell death and the release of inflammatory cytokines. Currently, there are limited effective therapeutic agents for AP. Betulinic acid (BA) is a pentacyclic triterpenoid extracted from Betula platyphylla that has been shown to have anti-inflammatory effects. In this study, we aimed to investigate the effects of BA on AP and elucidate the potential underlying mechanisms. AP was induced in mice through six intraperitoneal injections of cerulein. After the last cerulein injection, the mice were sacrificed. Our results revealed that pre- and post-treatment with BA significantly reduced the severity of pancreatitis, as evidenced by a decrease in histological damage in the pancreas and lung, serum amylase and lipase activity and pancreatic myeloperoxidase activity. Furthermore, BA pretreatment reduced proinflammatory cytokine production, augmentation of chemokines, and infiltration of macrophages and neutrophils in the pancreas of AP mice. In addition, mice that were pretreated with BA showed a reduction in Iκ-Bα degradation and nuclear factor-kappa B (NF-κB) binding activity in the pancreas. Moreover, BA reduced the production of proinflammatory cytokines and NF-κB activation in pancreatic acinar cells (PACs). These findings suggest that BA may have prophylactic and therapeutic effects on AP via inhibition of the NF-κB signaling pathway.  相似文献   

18.
Pinostrobin is a dietary flavonoid found in several plants that possesses pharmacological properties, such as anti-cancer, anti-virus, antioxidant, anti-ulcer, and anti-aromatase effects. However, it is unclear if pinostrobin exerts anti-melanogenic properties and, if so, what the underlying molecular mechanisms comprise. Therefore, we, in this study, investigated whether pinostrobin inhibits melanin biosynthesis in vitro and in vivo, as well as the potential associated mechanism. Pinostrobin reduced mushroom tyrosinase activity in vitro in a concentration-dependent manner, with an IC50 of 700 μM. Molecular docking simulations further revealed that pinostrobin forms a hydrogen bond, as well as other non-covalent interactions, between the C-type lectin-like fold and polyphenol oxidase chain, rather than the previously known copper-containing catalytic center. Additionally, pinostrobin significantly decreased α-melanocyte-stimulating hormone (α-MSH)-induced extracellular and intracellular melanin production, as well as tyrosinase activity, in B16F10 melanoma cells. More specifically, pinostrobin inhibited the α-MSH-induced melanin biosynthesis signaling pathway by suppressing the cAMP–CREB–MITF axis. In fact, pinostrobin also attenuated pigmentation in α-MSH-stimulated zebrafish larvae without causing cardiotoxicity. The findings suggest that pinostrobin effectively inhibits melanogenesis in vitro and in vivo via regulation of the cAMP–CREB–MITF axis.  相似文献   

19.
The prevalence of non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver diseases worldwide. This study examined the potential protective effects of a naturally occurring polyphenolic compound, methyl brevifolincarboxylate (MBC) on fatty liver injury in vitro. The results showed that MBC at its non-cytotoxic concentrations, reduced lipid droplet accumulation and triglyceride (TG) levels in the oleic acid (OA)-treated human hepatocarcinoma cell line, SK-HEP-1 and murine primary hepatocytes. In OA-treated SK-HEP-1 cells and primary murine hepatocytes, MBC attenuated the mRNA expression levels of the de novo lipogenesis molecules, acetyl-coenzyme A carboxylase (Acc1), fatty acid synthase (Fasn) and sterol regulatory element binding protein 1c (Srebp1c). MBC promoted the lipid oxidation factor peroxisome proliferator activated receptor-α (Pparα), and its target genes, carnitine palmitoyl transferase 1 (Cpt1) and acyl-coenzyme A oxidase 1 (Acox1) in both the SK-HEP-1 cells and primary murine hepatocytes. The mRNA results were further supported by the attenuated protein expression of lipogenesis and lipid oxidation molecules in OA-treated SK-HEP-1 cells. The MBC increased the expression of AMP activated protein kinase (AMPK) phosphorylation. On the other hand, MBC treatment dampened the inflammatory mediator’s, tumor necrosis factor (TNF)-α, interleukin-6 (IL-6), IL-8, and IL-1β secretion, and nuclear factor (NF)-κB expression (mRNA and protein) through reduced reactive oxygen species production in OA-treated SK-HEP-1 cells. Taken together, our results demonstrated that MBC possessed potential protective effects against NAFLD in vitro by amelioration of lipid metabolism and inflammatory markers through the AMPK/NF-κB signaling pathway.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号