共查询到20条相似文献,搜索用时 0 毫秒
1.
Anabela S. Ramalho Mieke Boon Marijke Proesmans Franois Vermeulen Marianne S. Carlon Kris De Boeck 《International journal of molecular sciences》2022,23(3)
Cystic fibrosis, a multi-organ genetic disease, is characterized by abnormal function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein, a chloride channel at the apical membrane of several epithelia. In recent years, therapeutic strategies have been developed to correct the CFTR defect. To evaluate CFTR function at baseline for diagnosis, or the efficacy of CFTR-restoring therapy, reliable tests are needed to measure CFTR function, in vitro, ex vivo and in vivo. In vitro techniques either directly or indirectly measure ion fluxes; direct measurement of ion fluxes and quenching of fluorescence in cell-based assays, change in transmembrane voltage or current in patch clamp or Ussing chamber, swelling of CFTR-containing organoids by secondary water influx upon CFTR activation. Several cell or tissue types can be used. Ex vivo and in vivo assays similarly evaluate current (intestinal current measurement) and membrane potential differences (nasal potential difference), on tissues from individual patients. In the sweat test, the most frequently used in vivo evaluation of CFTR function, chloride concentration or stimulated sweat rate can be directly measured. Here, we will describe the currently available bio-assays for quantitative evaluation of CFTR function, their indications, advantages and disadvantages, and correlation with clinical outcome measures. 相似文献
2.
Aniello Meoli Olaf Eickmeier Giovanna Pisi Valentina Fainardi Stefan Zielen Susanna Esposito 《International journal of molecular sciences》2022,23(20)
Cystic fibrosis (CF), the most common genetically inherited disease in Caucasian populations, is a multi-systemic life-threatening autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. In 2012, the arrival of CFTR modulators (potentiators, correctors, amplifiers, stabilizers, and read-through agents) revolutionized the therapeutic approach to CF. In this review, we examined the physiopathological mechanism of chronic dysregulated innate immune response in the lungs of CF patients with pulmonary involvement with particular reference to phagocytes, critically analyzing the role of CFTR modulators in influencing and eventually restoring their function. Our literature review highlighted that the role of CFTR in the lungs is crucial not only for the epithelial function but also for host defense, with particular reference to phagocytes. In macrophages and neutrophils, the CFTR dysfunction compromises both the intricate process of phagocytosis and the mechanisms of initiation and control of inflammation which then reverberates on the epithelial environment already burdened by the chronic colonization of pathogens leading to irreversible tissue damage. In this context, investigating the impact of CFTR modulators on phagocytic functions is therefore crucial not only for explaining the underlying mechanisms of pleiotropic effects of these molecules but also to better understand the physiopathological basis of this disease, still partly unexplored, and to develop new complementary or alternative therapeutic approaches. 相似文献
3.
Caitlyn Harvey Sinead Weldon Stuart Elborn Damian G. Downey Clifford Taggart 《International journal of molecular sciences》2022,23(7)
The advent of Cystic fibrosis transmembrane receptor (CFTR) modulators in 2012 was a critical event in the history of cystic fibrosis (CF) treatment. Unlike traditional therapies that target downstream effects of CFTR dysfunction, CFTR modulators aim to correct the underlying defect at the protein level. These genotype-specific therapies are now available for an increasing number of CF patients, transforming the way we view the condition from a life-limiting disease to one that can be effectively managed. Several studies have demonstrated the vast improvement CFTR modulators have on normalization of sweat chloride, CFTR function, clinical endpoints, and frequency of pulmonary exacerbation. However, their impact on other aspects of the disease, such as pathogenic burden and airway infection, remain under explored. Frequent airway infections as a result of increased susceptibility and impaired innate immune response are a serious problem within CF, often leading to accelerated decline in lung function and disease progression. Current evidence suggests that CFTR modulators are unable to eradicate pathogenic organisms in those with already established lung disease. However, this may not be the case for those with relatively low levels of disease progression and conserved microbial diversity, such as young patients. Furthermore, it remains unknown whether the restorative effects exerted by CFTR modulators extend to immune cells, such as phagocytes, which have the potential to modulate the response of people with CF (pwCF) to infection. Throughout this review, we look at the potential impact of CFTR modulators on airway infection in CF and their ability to shape impaired pulmonary defences to pathogens. 相似文献
4.
Liza Vinhoven Frauke Stanke Sylvia Hafkemeyer Manuel Manfred Nietert 《International journal of molecular sciences》2021,22(14)
Different causative therapeutics for CF patients have been developed. There are still no mutation-specific therapeutics for some patients, especially those with rare CFTR mutations. For this purpose, high-throughput screens have been performed which result in various candidate compounds, with mostly unclear modes of action. In order to elucidate the mechanism of action for promising candidate substances and to be able to predict possible synergistic effects of substance combinations, we used a systems biology approach to create a model of the CFTR maturation pathway in cells in a standardized, human- and machine-readable format. It is composed of a core map, manually curated from small-scale experiments in human cells, and a coarse map including interactors identified in large-scale efforts. The manually curated core map includes 170 different molecular entities and 156 reactions from 221 publications. The coarse map encompasses 1384 unique proteins from four publications. The overlap between the two data sources amounts to 46 proteins. The CFTR Lifecycle Map can be used to support the identification of potential targets inside the cell and elucidate the mode of action for candidate substances. It thereby provides a backbone to structure available data as well as a tool to develop hypotheses regarding novel therapeutics. 相似文献
5.
Alessandra Ghigo Giulia Prono Elisa Riccardi Virginia De Rose 《International journal of molecular sciences》2021,22(4)
Cystic fibrosis (CF) is an inherited disorder caused by mutations in the gene encoding for the cystic fibrosis transmembrane conductance regulator (CFTR) protein, an ATP-gated chloride channel expressed on the apical surface of airway epithelial cells. CFTR absence/dysfunction results in defective ion transport and subsequent airway surface liquid dehydration that severely compromise the airway microenvironment. Noxious agents and pathogens are entrapped inside the abnormally thick mucus layer and establish a highly inflammatory environment, ultimately leading to lung damage. Since chronic airway inflammation plays a crucial role in CF pathophysiology, several studies have investigated the mechanisms responsible for the altered inflammatory/immune response that, in turn, exacerbates the epithelial dysfunction and infection susceptibility in CF patients. In this review, we address the evidence for a critical role of dysfunctional inflammation in lung damage in CF and discuss current therapeutic approaches targeting this condition, as well as potential new treatments that have been developed recently. Traditional therapeutic strategies have shown several limitations and limited clinical benefits. Therefore, many efforts have been made to develop alternative treatments and novel therapeutic approaches, and recent findings have identified new molecules as potential anti-inflammatory agents that may exert beneficial effects in CF patients. Furthermore, the potential anti-inflammatory properties of CFTR modulators, a class of drugs that directly target the molecular defect of CF, also will be critically reviewed. Finally, we also will discuss the possible impact of SARS-CoV-2 infection on CF patients, with a major focus on the consequences that the viral infection could have on the persistent inflammation in these patients. 相似文献
6.
Targeting of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Protein with a Technetium‐99m Imaging Probe
下载免费PDF全文

Vera F. C. Ferreira Dr. Bruno L. Oliveira João D. Santos Dr. João D. G. Correia Prof. Dr. Carlos M. Farinha Dr. Filipa Mendes 《ChemMedChem》2018,13(14):1469-1478
Cystic fibrosis (CF) is caused by mutations in the gene that encodes the CF transmembrane conductance regulator (CFTR) protein. The most common mutation, F508del, leads to almost total absence of CFTR at the plasma membrane, a defect potentially corrected via drug‐based therapies. Herein, we report the first proof‐of‐principle study of a noninvasive imaging probe able to detect CFTR at the plasma membrane. We radiolabeled the CFTR inhibitor, CFTRinh‐172a, with technetium‐99m via a pyrazolyl‐diamine chelating unit, yielding a novel 99mTc(CO)3 complex. A non‐radioactive surrogate showed that the structural modifications introduced in the inhibitor did not affect its activity. The radioactive complex was able to detect plasma membrane CFTR, shown by its significantly higher uptake in wild‐type versus mutated cells. Furthermore, assessment of F508del CFTR pharmacological correction in human cells using the radioactive complex revealed differences in corrector versus control uptake, recapitulating the biochemical correction observed for the protein. 相似文献
7.
Julie Msinle Manon Ruffin Loïc Guillot Harriet Corvol 《International journal of molecular sciences》2022,23(22)
Although cystic fibrosis (CF) is recognized as a monogenic disease, due to variants within the CFTR (Cystic Fibrosis Transmembrane Regulator) gene, an extreme clinical heterogeneity is described among people with CF (pwCF). Apart from the exocrine pancreatic status, most studies agree that there is little association between CFTR variants and disease phenotypes. Environmental factors have been shown to contribute to this heterogeneity, accounting for almost 50% of the variability of the lung function of pwCF. Nevertheless, pwCF with similar CFTR variants and sharing the same environment (such as in siblings) may have highly variable clinical manifestations not explained by CFTR variants, and only partly explained by environmental factors. It is recognized that genetic variants located outside the CFTR locus, named “modifier genes”, influence the clinical expression of the disease. This short review discusses the latest studies that have described modifier factors associated with the various CF phenotypes as well as the response to the recent CFTR modulator therapies. 相似文献
8.
Melissa Iazzi Audrey Astori Jonathan St-Germain Brian Raught Gagan D. Gupta 《International journal of molecular sciences》2022,23(5)
Deletion of phenylalanine 508 (∆F508) of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) anion channel protein is the leading cause of Cystic Fibrosis (CF). Here, we report the analysis of CFTR and ∆F508-CFTR interactomes using BioID (proximity-dependent biotin identification), a technique that can also detect transient associations. We identified 474 high-confidence CFTR proximity-interactors, 57 of which have been previously validated, with the remainder representing novel interaction space. The ∆F508 interactome, comprising 626 proximity-interactors was markedly different from its wild type counterpart, with numerous alterations in protein associations categorized in membrane trafficking and cellular stress functions. Furthermore, analysis of the ∆F508 interactome in cells treated with Orkambi identified several interactions that were altered as a result of this drug therapy. We examined two candidate CFTR proximity interactors, VAPB and NOS1AP, in functional assays designed to assess surface delivery and overall chloride efflux. VAPB depletion impacted both CFTR surface delivery and chloride efflux, whereas NOS1AP depletion only affected the latter. The wild type and ∆F508-CFTR interactomes represent rich datasets that could be further mined to reveal additional candidates for the functional rescue of ∆F508-CFTR. 相似文献
9.
Charles Bengtson Neerupma Silswal Nathalie Baumlin Makoto Yoshida John Dennis Sireesha Yerrathota Michael Kim Matthias Salathe 《International journal of molecular sciences》2022,23(18)
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulators have led to dramatic improvements in lung function in many people with cystic fibrosis (PwCF). However, the efficacy of CFTR modulators may be hindered by persistent airway inflammation. The cytokine transforming growth factor-beta1 (TGF-β1) is associated with worse pulmonary disease in PwCF and can diminish modulator efficacy. Thus, strategies to augment the CFTR response to modulators in an inflammatory environment are needed. Here, we tested whether the CFTR amplifier nesolicaftor (or PTI-428) could rescue the effects of TGF-β1 on CFTR function and ciliary beating in primary human CF bronchial epithelial (CFBE) cells. CFBE cells homozygous for F508del were treated with the combination of elexacaftor/tezacaftor/ivacaftor (ETI) and TGF-β1 in the presence and absence of nesolicaftor. Nesolicaftor augmented the F508del CFTR response to ETI and reversed TGF-β1-induced reductions in CFTR conductance by increasing the expression of CFTR mRNA. Nesolicaftor further rescued the reduced ciliary beating and increased expression of the cytokines IL-6 and IL-8 caused by TGF-β1. Finally, nesolicaftor augmented the F508del CFTR response to ETI in CFBE cells overexpressing miR-145, a negative regulator of CFTR expression. Thus, CFTR amplifiers, but only when used with highly effective modulators, may provide benefit in an inflamed environment. 相似文献
10.
The emergence of highly effective CFTR modulator therapy has led to significant improvements in health care for most patients with cystic fibrosis (CF). For some, however, these therapies remain inaccessible due to the rarity of their individual CFTR variants, or due to a lack of biologic activity of the available therapies for certain variants. One proposed method of addressing this gap is the use of primary human cell-based models, which allow preclinical therapeutic testing and physiologic assessment of relevant tissue at the individual level. Nasal cells represent one such tissue source and have emerged as a powerful model for individual disease study. The ex vivo culture of nasal cells has evolved over time, and modern nasal cell models are beginning to be utilized to predict patient outcomes. This review will discuss both historical and current state-of-the art use of nasal cells for study in CF, with a particular focus on the use of such models to inform personalized patient care. 相似文献
11.
12.
13.
Dr. Chandrima Sinha Prof. Weiqiang Zhang Dr. Chang Suk Moon Marcelo Actis Sunitha Yarlagadda Dr. Kavisha Arora Dr. Koryse Woodroofe Prof. John P. Clancy Dr. Songbai Lin Prof. Assem G. Ziady Prof. Raymond Frizzell Prof. Naoaki Fujii Prof. Anjaparavanda P. Naren 《Chembiochem : a European journal of chemical biology》2015,16(14):2017-2022
Cystic fibrosis (CF) is a lethal genetic disease caused by the loss or dysfunction of the CF transmembrane conductance regulator (CFTR) channel. F508del is the most prevalent mutation of the CFTR gene and encodes a protein defective in folding and processing. VX‐809 has been reported to facilitate the folding and trafficking of F508del‐CFTR and augment its channel function. The mechanism of action of VX‐809 has been poorly understood. In this study, we sought to answer a fundamental question underlying the mechanism of VX‐809: does it bind CFTR directly in order to exert its action? We synthesized two VX‐809 derivatives, ALK‐809 and SUL‐809, that possess an alkyne group and retain the rescue capacity of VX‐809. By using CuI‐catalyzed click chemistry, we provide evidence that the VX‐809 derivatives bind CFTR directly in vitro and in cells. Our findings will contribute to the elucidation of the mechanism of action of CFTR correctors and the design of more potent therapeutics to combat CF. 相似文献
14.
Discovery of Natural Products Possessing Selective Eukaryotic Readthrough Activity: 3‐epi‐Deoxynegamycin and Its Leucine Adduct
下载免费PDF全文

Dr. Akihiro Taguchi Keisuke Hamada Masaya Kotake Dr. Masataka Shiozuka Dr. Hidemasa Nakaminami Dr. Thanigaimalai Pillaiyar Dr. Kentaro Takayama Dr. Fumika Yakushiji Prof. Norihisa Noguchi Prof. Takeo Usui Prof. Ryoichi Matsuda Prof. Yoshio Hayashi 《ChemMedChem》2014,9(10):2233-2237
Herein we report the first discovery of natural readthrough products that do not display antimicrobial activity. Two natural negamycins, 3‐epi‐deoxynegamycin and its leucine adduct, isolated 37 years ago, were found to be potent readthrough agents against nonsense mutations of eukaryotes, but not prokaryotes, without displaying antimicrobial activity. These results suggest that the compounds are valuable leads for the development of readthrough drugs against nonsense‐mediated genetic diseases without the potential for contributing to the emergence of drug‐resistant bacteria. 相似文献
15.
Daniel R. McHugh Calvin U. Cotton Craig A. Hodges 《International journal of molecular sciences》2021,22(1)
Many heritable genetic disorders arise from nonsense mutations, which generate premature termination codons (PTCs) in transcribed mRNA. PTCs ablate protein synthesis by prematurely terminating the translation of mutant mRNA, as well as reducing mutant mRNA quantity through targeted degradation by nonsense-mediated decay (NMD) mechanisms. Therapeutic strategies for nonsense mutations include facilitating ribosomal readthrough of the PTC and/or inhibiting NMD to restore protein function. However, the efficacy of combining readthrough agents and NMD inhibitors has not been thoroughly explored. In this study, we examined combinations of known NMD inhibitors and readthrough agents using functional analysis of the CFTR protein in primary cells from a mouse model carrying a G542X nonsense mutation in Cftr. We observed synergy between an inhibitor of the NMD component SMG-1 (SMG1i) and the readthrough agents G418, gentamicin, and paromomycin, but did not observe synergy with readthrough caused by amikacin, tobramycin, PTC124, escin, or amlexanox. These results indicate that treatment with NMD inhibitors can increase the quantity of functional protein following readthrough, and that combining NMD inhibitors and readthrough agents represents a potential therapeutic option for treating nonsense mutations. 相似文献
16.
Benoît Chevalier Nesrine Baatallah Matthieu Najm Solne Castanier Vincent Jung Iwona Pranke Anita Golec Vronique Stoven Stefano Marullo Fabrice Antigny Ida Chiara Guerrera Isabelle Sermet-Gaudelus Aleksander Edelman Alexandre Hinzpeter 《International journal of molecular sciences》2022,23(16)
Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment. 相似文献
17.
Kiera H. Harwood Rachel M. McQuade Andrew Jarnicki Elena K. Schneider-Futschik 《International journal of molecular sciences》2021,22(14)
Cystic fibrosis (CF) is caused by a defect in the cystic fibrosis transmembrane conductance regulator protein (CFTR) which instigates a myriad of respiratory complications including increased vulnerability to lung infections and lung inflammation. The extensive influx of pro-inflammatory cells and production of mediators into the CF lung leading to lung tissue damage and increased susceptibility to microbial infections, creates a highly inflammatory environment. The CF inflammation is particularly driven by neutrophil infiltration, through the IL-23/17 pathway, and function, through NE, NETosis, and NLRP3-inflammasome formation. Better understanding of these pathways may uncover untapped therapeutic targets, potentially reducing disease burden experienced by CF patients. This review outlines the dysregulated lung inflammatory response in CF, explores the current understanding of CFTR modulators on lung inflammation, and provides context for their potential use as therapeutics for CF. Finally, we discuss the determinants that need to be taken into consideration to understand the exaggerated inflammatory response in the CF lung. 相似文献
18.
19.
Christine Vssing Marta Owczarek-Lipska Kerstin Nagel-Wolfrum Charlotte Reiff Christoph Jüschke John Neidhardt 《International journal of molecular sciences》2020,21(22)
X-chromosomal retinitis pigmentosa (RP) frequently is caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene. We evaluated the potential of PTC124 (Ataluren, TranslamaTM) treatment to promote ribosomal read-through of premature termination codons (PTC) in RPGR. Expression constructs in HEK293T cells showed that the efficacy of read-through reagents is higher for UGA than UAA PTCs. We identified the novel hemizygous nonsense mutation c.1154T > A, p.Leu385* () causing a UAA PTC in RPGR and generated patient-derived fibroblasts. Immunocytochemistry of serum-starved control fibroblasts showed the RPGR protein in a dot-like expression pattern along the primary cilium. In contrast, RPGR was no longer detectable at the primary cilium in patient-derived cells. Applying PTC124 restored RPGR at the cilium in approximately 8% of patient-derived cells. RT-PCR and Western blot assays verified the pathogenic mechanisms underlying the nonsense variant. Immunofluorescence stainings confirmed the successful PTC124 treatment. Our results showed for the first time that PTC124 induces read-through of PTCs in RPGR and restores the localization of the RPGR protein at the primary cilium in patient-derived cells. These results may provide a promising new treatment option for patients suffering from nonsense mutations in RPGR or other genetic diseases. NM_000328.3相似文献
20.
Zhihong Zhang Jin Wang Yanhui H. Zhang Tonia E. Gardner Elizabeth A. Fitzpatrick Weiqiang Zhang 《International journal of molecular sciences》2021,22(5)
Two siblings with CF are homozygous for F508del (referred to as Subject A and Subject B). Despite having the same CFTR genotype and similar environment, these two subjects exhibited different disease phenotypes. We analyzed their medical records and CF Foundation Registry data and measured inflammatory protein mediators in their sputum samples. Then, we examined the longitudinal relationships between inflammatory markers and disease severity for each subject and compared between them. Subject A presented a more severe disease than Subject B. During the study period, Subject A had two pulmonary exacerbations (PEs) whereas Subject B had one mild PE. The forced expiratory volume in 1 s (FEV1, % predicted) values for Subject A were between 34–45% whereas for Subject B varied between 48–90%. Inflammatory protein mediators associated with neutrophils, Th1, Th2, and Th17 responses were elevated in sputum of Subject A compared with Subject B, and also in samples collected prior to and during PEs for both subjects. Neutrophilic elastase (NE) seemed to be the most informative biomarkers. The infectious burden between these two subjects was different. 相似文献