首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Accurate inference of the relationship between non-coding RNAs (ncRNAs) and drug resistance is essential for understanding the complicated mechanisms of drug actions and clinical treatment. Traditional biological experiments are time-consuming, laborious, and minor in scale. Although several databases provide relevant resources, computational method for predicting this type of association has not yet been developed. In this paper, we leverage the verified association data of ncRNA and drug resistance to construct a bipartite graph and then develop a linear residual graph convolution approach for predicting associations between non-coding RNA and drug resistance (LRGCPND) without introducing or defining additional data. LRGCPND first aggregates the potential features of neighboring nodes per graph convolutional layer. Next, we transform the information between layers through a linear function. Eventually, LRGCPND unites the embedding representations of each layer to complete the prediction. Results of comparison experiments demonstrate that LRGCPND has more reliable performance than seven other state-of-the-art approaches with an average AUC value of 0.8987. Case studies illustrate that LRGCPND is an effective tool for inferring the associations between ncRNA and drug resistance.  相似文献   

6.
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy; it is considered a network disorder associated with structural changes. Incomplete knowledge of the pathological changes in TLE complicates a therapeutic approach; indeed, 30 to 50% of patients with TLE are refractory to drug treatment. Non-coding RNAs (ncRNAs), acting as epigenetic factors, participate in the regulation of the pathophysiological processes of epilepsy and are dysregulated during epileptogenesis. Abnormal expression of ncRNA is observed in patients with epilepsy and in animal models of epilepsy. Furthermore, ncRNAs could also be used as biomarkers for the diagnosis and prognosis of treatment response in epilepsy. In summary, ncRNAs can represent important mechanisms and targets for the modulation of brain excitability and can provide information on pathomechanisms, biomarkers and novel therapies for epilepsy. In this review, we summarize the latest research advances concerning mainly molecular mechanisms, regulated by ncRNA, such as synaptic plasticity, inflammation and apoptosis, already associated with the pathogenesis of TLE. Moreover, we discuss the role of ncRNAs, such as microRNAs, long non-coding RNAs and circular RNAs, in the pathophysiology of epilepsy, highlighting their use as potential biomarkers for future therapeutic approaches.  相似文献   

7.
8.
Growing evidence shows a close association of transposable elements (TE) with non-coding RNAs (ncRNA), and a significant number of small ncRNAs originate from TEs. Further, ncRNAs linked with TE sequences participate in a wide-range of regulatory functions. Alu elements in particular are critical players in gene regulation and molecular pathways. Alu sequences embedded in both long non-coding RNAs (lncRNA) and mRNAs form the basis of targeted mRNA decay via short imperfect base-pairing. Imperfect pairing is prominent in most ncRNA/target RNA interactions and found throughout all biological kingdoms. The piRNA-Piwi complex is multifunctional, but plays a major role in protection against invasion by transposons. This is an RNA-based genetic immune system similar to the one found in prokaryotes, the CRISPR system. Thousands of long intergenic non-coding RNAs (lincRNAs) are associated with endogenous retrovirus LTR transposable elements in human cells. These TEs can provide regulatory signals for lincRNA genes. A surprisingly large number of long circular ncRNAs have been discovered in human fibroblasts. These serve as “sponges” for miRNAs. Alu sequences, encoded in introns that flank exons are proposed to participate in RNA circularization via Alu/Alu base-pairing. Diseases are increasingly found to have a TE/ncRNA etiology. A single point mutation in a SINE/Alu sequence in a human long non-coding RNA leads to brainstem atrophy and death. On the other hand, genomic clusters of repeat sequences as well as lncRNAs function in epigenetic regulation. Some clusters are unstable, which can lead to formation of diseases such as facioscapulohumeral muscular dystrophy. The future may hold more surprises regarding diseases associated with ncRNAs andTEs.  相似文献   

9.
10.
Non-coding RNAs (ncRNAs) are emerging therapeutic tools but there are barriers to their translation to clinical practice. Key issues concern the specificity of the targets, the delivery of the molecules, and their stability, while avoiding “on-target” and “off-target” side effects. In this “ncRNA in therapeutics” issue, we collect several studies of the differential expression of ncRNAs in cardiovascular diseases, bone metabolism-related disorders, neurology, and oncology, and their potential to be used as biomarkers or therapeutic targets. Moreover, we review recent advances in the use of antisense ncRNAs in targeted therapies with a particular emphasis on their basic biological mechanisms, their translational potential, and future trends.  相似文献   

11.
12.
Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information.  相似文献   

13.
14.
15.
16.
17.
A wide variety of biological effects are induced in cells that are exposed to ionizing radiation. The expression changes of coding mRNA and non-coding micro-RNA have been implicated in irradiated cells. The involvement of other classes of non-coding RNAs (ncRNA), such as small nucleolar RNAs (snoRNAs), long ncRNAs (lncRNAs), and PIWI-interacting RNAs (piRNAs) in cells recovering from radiation-induced damage has not been examined. Thus, we investigated whether these ncRNA were undergoing changes in cells exposed to ionizing radiation. The modulation of ncRNAs expression was determined in human TK6 (p53 positive) and WTK1 (p53 negative) cells. The snoRNA host genes SNHG1, SNHG6, and SNHG11 were induced in TK6 cells. In WTK1 cells, SNHG1 was induced but SNHG6, and SNHG11 were repressed. SNHG7 was repressed in TK6 cells and was upregulated in WTK1 cells. The lncRNA MALAT1 and SOX2OT were induced in both TK6 and WTK1 cells and SRA1 was induced in TK6 cells only. Interestingly, the MIAT and PIWIL1 were not expressed in TK6 cells before or after the ionizing radiation treatment. The MIAT and PIWIL1 were upregulated in WTK1 cells. This data provides evidence that altered ncRNA expression is a part of the complex stress response operating in radiation-treated cells and this response depends on functional p53.  相似文献   

18.
Circular RNAs (circRNAs) and long noncoding RNAs (lncRNAs) are differentially expressed in gastrointestinal cancers. These noncoding RNAs (ncRNAs) regulate a variety of cellular activities by physically interacting with microRNAs and proteins and altering their activity. It has also been suggested that exosomes encapsulate circRNAs and lncRNAs in cancer cells. Exosomes are then discharged into the extracellular environment, where they are taken up by other cells. As a result, exosomal ncRNA cargo is critical for cell–cell communication within the cancer microenvironment. Exosomal ncRNAs can regulate a range of events, such as angiogenesis, metastasis, immune evasion, drug resistance, and epithelial-to-mesenchymal transition. To set the groundwork for developing novel therapeutic strategies against gastrointestinal malignancies, a thorough understanding of circRNAs and lncRNAs is required. In this review, we discuss the function and intrinsic features of oncogenic circRNAs and lncRNAs that are enriched within exosomes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号