首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer’s disease is a chronic neurodegenerative disorder and represents the main cause of dementia globally. Currently, the world is suffering from the coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a virus that uses angiotensin-converting enzyme 2 (ACE2) as a receptor to enter the host cells. In COVID-19, neurological manifestations have been reported to occur. The present study demonstrates that the protein expression level of ACE2 is upregulated in the brain of patients with Alzheimer’s disease. The increased ACE2 expression is not age-dependent, suggesting the direct relationship between Alzheimer’s disease and ACE2 expression. Oxidative stress has been implicated in the pathogenesis of Alzheimer’s disease, and brains with the disease examined in this study also exhibited higher carbonylated proteins, as well as an increased thiol oxidation state of peroxiredoxin 6 (Prx6). A moderate positive correlation was found between the increased ACE2 protein expression and oxidative stress in brains with Alzheimer’s disease. In summary, the present study reveals the relationships between Alzheimer’s disease and ACE2, the receptor for SARS-CoV-2. These results suggest the importance of carefully monitoring patients with both Alzheimer’s disease and COVID-19 in order to identify higher viral loads in the brain and long-term adverse neurological consequences.  相似文献   

2.
Alzheimer’s disease (AD) is characterized by the deposition of amyloid-beta (Aβ) plaques from improper amyloid-beta precursor protein (APP) cleavage. Following studies of inflammation caused by coronavirus-2019 (COVID-19) infection, this study investigated the impact of COVID-19 on APP expression. A meta-analysis was conducted utilizing QIAGEN Ingenuity Pathway Analysis (IPA) to examine the link between severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and the modulation of APP expression upon virus binding the Angiotensin-converting enzyme-2 (ACE2) receptor. A Core Analysis was run on the infection by severe acute respiratory syndrome (SARS) coronavirus node, which included molecules affected by SARS-CoV-2, revealing its upstream regulators. Intermediary molecules were found between the upstream regulators and ACE2 and between ACE2 and APP. Activation of the upstream regulators downregulated the expression of ACE2 with a Z-score of −1.719 (p-value = 0.086) and upregulated APP with a Z-score of 1.898 (p-value = 0.058), showing a less than 10% chance of the results occurring by chance and pointing to an inverse relationship between ACE2 and APP expression. The neuroinflammation signaling pathway was the fifth top canonical pathway involved in APP upregulation. The study results suggest that ACE2 could be downregulated by SARS-CoV-2, resulting in APP upregulation, and potentially exacerbating the onset and progression of AD.  相似文献   

3.
The coronavirus disease 2019 (COVID-19) pandemic has negatively impacted millions of lives, despite several vaccine interventions and strict precautionary measures. The main causative organism of this disease is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which infects the host via two key players: the angiotensin-converting enzyme 2 (ACE2) and the transmembrane protease, serine 2 (TMPRSS2). Some reports revealed that patients with glycemic dysregulation could have increased susceptibility to developing COVID-19 and its related neurological complications. However, no previous studies have looked at the involvement of these key molecules within the hypothalamus, which is the central regulator of glucose in the brain. By exposing embryonic mouse hypothalamic neurons to varying glucose concentrations, we aimed to investigate the expression of ACE2 and TMPRSS2 using quantitative real time polymerase chain reaction and western blotting. A significant and time-dependent increase and decrease was observed on the viability of hypothalamic neurons with increasing and decreasing glucose concentrations, respectively (p < 0.01 and p < 0.001, respectively). Under the same increasing and decreasing glucose conditions, the expression of hypothalamic ACE2 also revealed a significant and time-dependent increase (p < 0.01). These findings suggest that SARS-CoV-2 invades the hypothalamic circuitry. In addition, it highlights the importance of strict glycemic control for COVID-19 in diabetic patients.  相似文献   

4.
The inflammasome complex is a key part of chronic diseases and acute infections, being responsible for cytokine release and cell death mechanism regulation. The SARS-CoV-2 infection is characterized by a dysregulated cytokine release. In this context, the inflammasome complex analysis within SARS-CoV-2 infection may prove beneficial to understand the disease’s mechanisms. Post-mortem minimally invasive autopsies were performed in patients who died from COVID-19 (n = 24), and lung samples were compared to a patient control group (n = 11) and an Influenza A virus H1N1 subtype group from the 2009 pandemics (n = 10). Histological analysis was performed using hematoxylin-eosin staining. Immunohistochemical (IHC) staining was performed using monoclonal antibodies against targets: ACE2, TLR4, NF-κB, NLRP-3 (or NALP), IL-1β, IL-18, ASC, CASP1, CASP9, GSDMD, NOX4, TNF-α. Data obtained from digital analysis underwent appropriate statistical tests. IHC analysis showed biomarkers that indicate inflammasome activation (ACE2; NF-κB; NOX4; ASC) were significantly increased in the COVID-19 group (p < 0.05 for all) and biomarkers that indicate cell pyroptosis and inflammasome derived cytokines such as IL-18 (p < 0.005) and CASP1 were greatly increased (p < 0.0001) even when compared to the H1N1 group. We propose that the SARS-CoV-2 pathogenesis is connected to the inflammasome complex activation. Further studies are still warranted to elucidate the pathophysiology of the disease.  相似文献   

5.
The SARS-CoV-2 infection determines the COVID-19 syndrome characterized, in the worst cases, by severe respiratory distress, pulmonary and cardiac fibrosis, inflammatory cytokine release, and immunosuppression. This condition has led to the death of about 2.15% of the total infected world population so far. Among survivors, the presence of the so-called persistent post-COVID-19 syndrome (PPCS) is a common finding. In COVID-19 survivors, PPCS presents one or more symptoms: fatigue, dyspnea, memory loss, sleep disorders, and difficulty concentrating. In this study, a cohort of 117 COVID-19 survivors (post-COVID-19) and 144 non-infected volunteers (COVID-19-free) was analyzed using pyrosequencing of defined CpG islands previously identified as suitable for biological age determination. The results show a consistent biological age increase in the post-COVID-19 population, determining a DeltaAge acceleration of 10.45 ± 7.29 years (+5.25 years above the range of normality) compared with 3.68 ± 8.17 years for the COVID-19-free population (p < 0.0001). A significant telomere shortening parallels this finding in the post-COVID-19 cohort compared with COVID-19-free subjects (p < 0.0001). Additionally, ACE2 expression was decreased in post-COVID-19 patients, compared with the COVID-19-free population, while DPP-4 did not change. In light of these observations, we hypothesize that some epigenetic alterations are associated with the post-COVID-19 condition, particularly in younger patients (< 60 years).  相似文献   

6.
Increasing evidence suggests that elderly people with dementia are vulnerable to the development of severe coronavirus disease 2019 (COVID-19). In Alzheimer’s disease (AD), the major form of dementia, β-amyloid (Aβ) levels in the blood are increased; however, the impact of elevated Aβ levels on the progression of COVID-19 remains largely unknown. Here, our findings demonstrate that Aβ1-42, but not Aβ1-40, bound to various viral proteins with a preferentially high affinity for the spike protein S1 subunit (S1) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the viral receptor, angiotensin-converting enzyme 2 (ACE2). These bindings were mainly through the C-terminal residues of Aβ1-42. Furthermore, Aβ1-42 strengthened the binding of the S1 of SARS-CoV-2 to ACE2 and increased the viral entry and production of IL-6 in a SARS-CoV-2 pseudovirus infection model. Intriguingly, data from a surrogate mouse model with intravenous inoculation of Aβ1-42 show that the clearance of Aβ1-42 in the blood was dampened in the presence of the extracellular domain of the spike protein trimers of SARS-CoV-2, whose effects can be prevented by a novel anti-Aβ antibody. In conclusion, these findings suggest that the binding of Aβ1-42 to the S1 of SARS-CoV-2 and ACE2 may have a negative impact on the course and severity of SARS-CoV-2 infection. Further investigations are warranted to elucidate the underlying mechanisms and examine whether reducing the level of Aβ1-42 in the blood is beneficial to the fight against COVID-19 and AD.  相似文献   

7.
Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood–brain barrier (BBB). Finally, we discuss how the endothelial blood–brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.  相似文献   

8.
Blockers of the renin-angiotensin system (RAS) have been reported to increase the angiotensin converting enzyme (ACE)2, the cellular receptor of SARS-CoV-2, and thus the risk and course of COVID-19. Therefore, we investigated if angiotensin (Ang) II and RAS blockers affected ACE2 expression and SARS-CoV-2 infectivity in human epithelial bronchial Calu-3 cells. By infectivity and spike-mediated cell–cell fusion assays, we showed that Ang II acting on the angiotensin type 1 receptor markedly increased ACE2 at mRNA and protein levels, resulting in enhanced SARS-CoV-2 cell entry. These effects were abolished by irbesartan and not affected by the blockade of ACE-1-mediated Ang II formation with ramipril, and of ACE2- mediated Ang II conversion into Ang 1-7 with MLN-4760. Thus, enhanced Ang II production in patients with an activated RAS might expose to a greater spread of COVID-19 infection in lung cells. The protective action of Angiotensin type 1 receptor antagonists (ARBs) documented in these studies provides a mechanistic explanation for the lack of worse outcomes in high-risk COVID-19 patients on RAS blockers.  相似文献   

9.
10.
Inflammasome activation is one of the first steps in initiating innate immune responses. In this work, we studied the activation of inflammasomes in the airways of critically ill COVID-19 patients and the effects of N-acetylcysteine (NAC) on inflammasomes. Tracheal biopsies were obtained from critically ill patients without COVID-19 and no respiratory disease (control, n = 32), SARS-CoV-2 B.1 variant (n = 31), and B.1.1.7 VOC alpha variant (n = 20) patients. Gene expression and protein expression were measured by RT-qPCR and immunohistochemistry. Macrophages and bronchial epithelial cells were stimulated with different S, E, M, and N SARS-CoV-2 recombinant proteins in the presence or absence of NAC. NLRP3 inflammasome complex was over-expressed and activated in the COVID-19 B.1.1.7 VOC variant and associated with systemic inflammation and 28-day mortality. TLR2/MyD88 and redox NOX4/Nrf2 ratio were also over-expressed in the COVID-19 B.1.1.7 VOC variant. The combination of S-E-M SARS-CoV-2 recombinant proteins increased cytokine release in macrophages and bronchial epithelial cells through the activation of TLR2. NAC inhibited SARS-CoV-2 mosaic (S-E-M)-induced cytokine release and inflammasome activation. In summary, inflammasome is over-activated in severe COVID-19 and increased in B.1.1.7 VOC variant. In addition, NAC can reduce inflammasome activation induced by SARS-CoV-2 in vitro, which may be of potential translational value in COVID-19 patients.  相似文献   

11.
12.
The new SARS-CoV-2 coronavirus is responsible for the COVID-19 pandemic. A massive vaccination campaign, which is still ongoing, has averted most serious consequences worldwide; however, lines of research are continuing to identify the best drug therapies to treat COVID-19 infection. SARS-CoV-2 penetrates the cells of the host organism through ACE2. The ACE2 protein plays a key role in the renin–angiotensin system (RAS) and undergoes changes in expression during different stages of COVID-19 infection. It appears that an unregulated RAS is responsible for the severe lung damage that occurs in some cases of COVID-19. Pharmacologically modifying the expression of ACE2 could be an interesting line of research to follow in order to avoid the severe complications of COVID-19.  相似文献   

13.
Background: Preexisting immunity to SARS-CoV-2 could be related to cross-reactive antibodies to common human-coronaviruses (HCoVs). This study aimed to evaluate whether human milk antibodies against to S1 and S2 subunits SARS-CoV-2 are cross-reactive to S1 and S2 subunits HCoV-OC43 and HCoV-229E in mothers with a confirmed COVID-19 PCR test, in mothers with previous viral symptoms during COVID-19 pandemic, and in unexposed mothers; Methods: The levels of secretory IgA (SIgA)/IgA, secretory IgM (SIgM)/IgM, and IgG specific to S1 and S2 SARS-CoV-2, and reactive to S1 + S2 HCoV-OC43, and HCoV-229E were measured in milk from 7 mothers with a confirmed COVID-19 PCR test, 20 mothers with viral symptoms, and unexposed mothers (6 Ctl1-2018 and 16 Ctl2-2018) using ELISA; Results: The S2 SARS-CoV-2 IgG levels were higher in the COVID-19 PCR (p = 0.014) and viral symptom (p = 0.040) groups than in the Ctl1-2018 group. We detected a higher number of positive correlations between the antigens and secretory antibodies in the COVID-19 PCR group than in the viral symptom and Ctl-2018 groups. S1 + S2 HCoV-OC43-reactive IgG was higher in the COVID-19 group than in the control group (p = 0.002) but did not differ for the other antibodies; Conclusions: Mothers with a confirmed COVID-19 PCR and mothers with previous viral symptoms had preexisting human milk antibodies against S2 subunit SARS-CoV-2. Human milk IgG were more specific to S2 subunit SARS-CoV-2 than other antibodies, whereas SIgA and SIgM were polyreactive and cross-reactive to S1 or S2 subunit SARS-CoV-2.  相似文献   

14.
Emerging evidence suggests that males are more susceptible to severe infection by the SARS-CoV-2 virus than females. A variety of mechanisms may underlie the observed gender-related disparities including differences in sex hormones. However, the precise mechanisms by which female sex hormones may provide protection against SARS-CoV-2 infectivity remains unknown. Here we report new insights into the molecular basis of the interactions between the SARS-CoV-2 spike (S) protein and the human ACE2 receptor. We further report that glycosylation of the ACE2 receptor enhances SARS-CoV-2 infectivity. Importantly, estrogens can disrupt glycan–glycan interactions and glycan–protein interactions between the human ACE2 and the SARS-CoV-2 thereby blocking its entry into cells. In a mouse model of COVID-19, estrogens reduced ACE2 glycosylation and thereby alveolar uptake of the SARS-CoV-2 spike protein. These results shed light on a putative mechanism whereby female sex hormones may provide protection from developing severe infection and could inform the development of future therapies against COVID-19.  相似文献   

15.
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin–angiotensin–aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19’s symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.  相似文献   

16.
The angiotensin-converting enzyme 2 (ACE2) is the receptor used by SARS-CoV and SARS-CoV-2 coronaviruses to attach to cells via the receptor-binding domain (RBD) of their viral spike protein. Since the start of the COVID-19 pandemic, several structures of protein complexes involving ACE2 and RBD as well as monoclonal antibodies and nanobodies have become available. We have leveraged the structural data to design peptides to target the interaction between the RBD of SARS-CoV-2 and ACE2 and SARS-CoV and ACE2, as contrasting exemplar, as well as the dimerization surface of ACE2 monomers. The peptides were modelled using our original method: PiPreD that uses native elements of the interaction between the targeted protein and cognate partner(s) that are subsequently included in the designed peptides. These peptides recapitulate stretches of residues present in the native interface plus novel and highly diverse conformations surrogating key interactions at the interface. To facilitate the access to this information we have created a freely available and dedicated web-based repository, PepI-Covid19 database, providing convenient access to this wealth of information to the scientific community with the view of maximizing its potential impact in the development of novel therapeutic and diagnostic agents.  相似文献   

17.
The coronavirus disease 2019 (COVID-19) pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the development of vaccines, the emergence of SARS-CoV-2 variants and the absence of effective therapeutics demand the continual investigation of COVID-19. Natural products containing active ingredients may be good therapeutic candidates. Here, we investigated the effectiveness of geraniin, the main ingredient in medical plants Elaeocarpus sylvestris var. ellipticus and Nephelium lappaceum, for treating COVID-19. The SARS-CoV-2 spike protein binds to the human angiotensin-converting enzyme 2 (hACE2) receptor to initiate virus entry into cells; viral entry may be an important target of COVID-19 therapeutics. Geraniin was found to effectively block the binding between the SARS-CoV-2 spike protein and hACE2 receptor in competitive enzyme-linked immunosorbent assay, suggesting that geraniin might inhibit the entry of SARS-CoV-2 into human epithelial cells. Geraniin also demonstrated a high affinity to both proteins despite a relatively lower equilibrium dissociation constant (KD) for the spike protein (0.63 μM) than hACE2 receptor (1.12 μM), according to biolayer interferometry-based analysis. In silico analysis indicated geraniin’s interaction with the residues functionally important in the binding between the two proteins. Thus, geraniin is a promising therapeutic agent for COVID-19 by blocking SARS-CoV-2’s entry into human cells.  相似文献   

18.
The elderly and patients with several comorbidities experience more severe cases of coronavirus disease 2019 (COVID-19) than healthy patients without underlying medical conditions. However, it is unclear why these people are prone to developing alveolar pneumonia, rapid exacerbations, and death. Therefore, we hypothesized that people with comorbidities may have a genetic predisposition that makes them more vulnerable to various factors; for example, they are likely to become more severely ill when infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To test this hypothesis, we searched the literature extensively. Polymorphisms of genes, such as those that encode angiotensin-converting enzyme 1 (ACE1), have been associated with numerous comorbidities, such as cardiovascular disease, hypertension, diabetes, chronic kidney disease, and obesity, and there are potential mechanisms to explain these associations (e.g., DD-type carriers have greater ACE1 activity, and patients with a genetic alpha-1 anti-trypsin (AAT) deficiency lack control over inflammatory mediators). Since comorbidities are associated with chronic inflammation and are closely related to the renin–angiotensin–aldosterone system (RAAS), these individuals may already have a mild ACE1/ACE2 imbalance before viral infection, which increases their risk for developing severe cases of COVID-19. However, there is still much debate about the association between ACE1 D/I polymorphism and comorbidities. The best explanation for this discrepancy could be that the D allele and DD subtypes are associated with comorbidities, but the DD genotype alone does not have an exceptionally large effect. This is also expected since the ACE1 D/I polymorphism is only an intron marker. We also discuss how polymorphisms of AAT and other genes are involved in comorbidities and the severity of SARS-CoV-2 infection. Presumably, a combination of multiple genes and non-genetic factors is involved in the establishment of comorbidities and aggravation of COVID-19.  相似文献   

19.
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the COVID-19 pandemic. Patients may present as asymptomatic or demonstrate mild to severe and life-threatening symptoms. Although COVID-19 has a respiratory focus, there are major cardiovascular complications (CVCs) associated with infection. The reported CVCs include myocarditis, heart failure, arrhythmias, thromboembolism and blood pressure abnormalities. These occur, in part, because of dysregulation of the Renin–Angiotensin–Aldosterone System (RAAS) and Kinin–Kallikrein System (KKS). A major route by which SARS-CoV-2 gains cellular entry is via the docking of the viral spike (S) protein to the membrane-bound angiotensin converting enzyme 2 (ACE2). The roles of ACE2 within the cardiovascular and immune systems are vital to ensure homeostasis. The key routes for the development of CVCs and the recently described long COVID have been hypothesised as the direct consequences of the viral S protein/ACE2 axis, downregulation of ACE2 and the resulting damage inflicted by the immune response. Here, we review the impact of COVID-19 on the cardiovascular system, the mechanisms by which dysregulation of the RAAS and KKS can occur following virus infection and the future implications for pharmacological therapies.  相似文献   

20.
The renin–angiotensin system (RAS) is a key regulator of blood pressure and hypertension. Angiotensin-converting enzyme 2 (ACE2) and angiotensin-converting enzyme I (ACE) are two main components of the RAS that play a major role in blood pressure homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 as a receptor to enter cells. Despite some controversies, numerous studies have reported a significant association between the use of ACE inhibitors and reduced risk of COVID-19. In our previous studies, we produced and identified peptide sequences present in whey hydrolysates exhibiting high ACE inhibitory activity. Therefore, the aim of this work is to obtain an improved understanding of the function of these natural peptides as RAS inhibitors and investigate their potential therapeutic role in the COVID-19 pandemic. The molecular interactions between peptides IPP, LIVTQ, IIAE, LVYPFP, and human ACE2 were assessed by employing a molecular docking approach. The results show that natural whey-derived peptides have a dual inhibitory action against both ACE and ACE2. This dual activity distinguishes these ACE inhibitory peptides from synthetic drugs, such as Captopril and Lisinopril which were not shown to inhibit ACE2 activity, and may represent a potential strategy in the treatment of COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号