首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pd(II), Pt(II) and Ag(I) ions were found to form stable complexes with 4-(p-tolyl)- or 4-ethyl-1-(pyridin-2-yl)thiosemicarbazides (Hp-TPTS or HEPTS). The complex structure was elucidated by analysis (elemental and thermal), spectroscopy (electronic, IR and 1H NMR spectra) and physical measurements (magnetic susceptibility and molar conductance). The ligands coordinate to the metal ions as monobasic bidentate through nitrogen and sulfur atoms. The electronic spectra of the Pt(II) complexes in DMF showed a metal to ligand charge transfer transition at 11,935–13,260 cm?1. The structural, electronic and vibrational features of HEPTS and Hp?TPTS were discussed on the basis of semi-empirical quantum mechanic calculations [ZINDO/S and semi-empirical parameterization (PM3)]. The simulated IR and electronic spectra are found reasonable in accordance with the experimental data. Finally, the antibacterial activities of the ligands and their complexes were investigated and some were found promising.  相似文献   

2.
A series of coumarin-thiadiazole hybrids and their corresponding Cu(II) and Zn(II) complexes were synthesized and characterized with the use of spectroscopic techniques. The results obtained indicate that all the coumarin-thiadiazole hybrids act as bidentate chelators of Cu(II) and Zn(II) ions. The complexes isolated differ in their ligand:metal ratio depending on the central metal. In most cases, the Zn(II) complexes are characteristic of a 1:1 ligand:metal ratio, while in the Cu(II) complexes the ligand:metal ratio is 2:1. All compounds were tested as potential antibacterial agents against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains demonstrating activities notably lower than commercially available antibiotics. The more promising results were obtained from the assessment of antineurodegenerative potency as all compounds showed moderate acetylcholinesterase (AChE) inhibition activity  相似文献   

3.
(1) Background: Ruthenium and osmium complexes attract increasing interest as next generation anticancer drugs. Focusing on structure-activity-relationships of this class of compounds, we report on 17 different ruthenium(II) complexes and four promising osmium(II) analogues with cinnamic acid derivatives as O,S bidentate ligands. The aim of this study was to determine the anticancer activity and the ability to evade platin resistance mechanisms for these compounds. (2) Methods: Structural characterizations and stability determinations have been carried out with standard techniques, including NMR spectroscopy and X-ray crystallography. All complexes and single ligands have been tested for cytotoxic activity on two ovarian cancer cell lines (A2780, SKOV3) and their cisplatin-resistant isogenic cell cultures, a lung carcinoma cell line (A549) as well as selected compounds on three non-cancerous cell cultures in vitro. FACS analyses and histone γH2AX staining were carried out for cell cycle distribution and cell death or DNA damage analyses, respectively. (3) Results: IC50 values show promising results, specifically a high cancer selective cytotoxicity and evasion of resistance mechanisms for Ru(II) and Os(II) compounds. Histone γH2AX foci and FACS experiments validated the high cytotoxicity but revealed diminished DNA damage-inducing activity and an absence of cell cycle disturbance thus pointing to another mode of action. (4) Conclusion: Ru(II) and Os(II) compounds with O,S-bidentate ligands show high cytotoxicity without strong effects on DNA damage and cell cycle, and this seems to be the basis to circumvent resistance mechanisms and for the high cancer cell specificity.  相似文献   

4.
The antimicrobial activity of surfactant-associated anionic peptides (SAAPs), which are isolated from the ovine pulmonary surfactant and are selective against the ovine pathogen Mannheimia haemolytica, is strongly enhanced in the presence of Zn(II) ions. Both calorimetry and ITC measurements show that the unique Asp-only peptide SAAP3 (DDDDDDD) and its analogs SAAP2 (GDDDDDD) and SAAP6 (GADDDDD) have a similar micromolar affinity for Zn(II), which binds to the N-terminal amine and Asp carboxylates in a net entropically-driven process. All three peptides also bind Cu(II) with a net entropically-driven process but with higher affinity than they bind Zn(II) and coordination that involves the N-terminal amine and deprotonated amides as the pH increases. The parent SAAP3 binds Cu(II) with the highest affinity; however, as shown with potentiometry and absorption, CD and EPR spectroscopy, Asp residues in the first and/or second positions distinguish Cu(II) binding to SAAP3 and SAAP2 from their binding to SAAP6, decreasing the Cu(II) Lewis acidity and suppressing its square planar amide coordination by two pH units. We also show that these metal ions do not stabilize a membrane disrupting ability nor do they induce the antimicrobial activity of these peptides against a panel of human pathogens.  相似文献   

5.
Preparation, ligational and biological properties of some pyrazinedicarboxaimide derived furanyl, thienyl and pyrrolyl compounds with Co(ll), Cu(ll), Ni(ll) and Zn(ll) metals are described. Magnetic moments, electronic, infrared, nuclear magnetic resonance spectra and elemental analysis data indicate that co-ordination of the ligands with the metal ions take place through the pyrazine ring nitrogen, azomethine nitrogen and heteroatom of heterocyclic ring system. The compounds are all novel and are proposed to possess an octahedral geometry for Co(ll) and Ni(ll), and a distorted octahedral geometry for Cu(ll) and Zn(ll) complexes. The comparative biological properties of the title ligands and their metal chelates against different bacterial species are also described.  相似文献   

6.
This paper reports the design, synthesis and cytotoxicity studies of two new isoxazole-derived aroylhydrazone ligands and their dinuclear copper(II) complexes. Compounds were fully characterized by various spectroscopic and analytical techniques. The molecular structures of four derivatives were confirmed by X-ray crystallography. The stability of the ligands and the complexes in aqueous medium was monitored spectroscopically. Both the ligands and the complexes were shown to interact with calf thymus DNA (ct-DNA). Additionally, structures containing a phenol pendant arm were significantly more cytotoxic than those carrying a pendant pyridine substituent, reaching sub-micromolar IC50 values on the triple-negative human breast cancer cell line MDA-MB-231. The metal chelation and transchelation ability of the compounds towards FeII, FeIII and ZnII ions was explored as a possible mechanism of action of these compounds.  相似文献   

7.
Cu(II) and Ni(II) complexes with three grades of carboxymethyl cellulose (CMC) with different degrees of substitution have been synthesized and characterized. Probable structures of the metal complexes are inferred from the electronic and IR spectra, elemental analysis data and magnetic moment measurements. CMC coordinates with cu(II) and Ni(II) via the carboxymethyl and hydroxyl groups. The effect of the degree of substition of the CMC on the mode of chelation is discussed. Ni(II) complexes show an octahedral geometry around the metal ion and exhibit the formula [NiL · 4H2O]Cl. Cu(II) complexes exist in the square planar form and have the formula Cu(L)2, where L is uninegatively charged bidentate CMC ligand. The ligand field parameters of Ni(II) complexes are also evaluated.  相似文献   

8.
Novel dinuclear copper(II) complex and phenoxy-bridged tetranuclear zinc(II) complex with 1,3-diphenyl-4-(salicylidene hydrazone)-phenylethylene-pyrazolone-5 (DPPeP-SAH) have been synthesized and characterized by X-ray crystallography. The X-ray diffraction analyses of the complexes show that two Cu(II) centers are bonded with two tetradentated ligands and the geometries around the central ions are slightly distorted square planar, while in zinc(II) complex central metal ions are held together by four μ-phenoxo bridges that lead to the formation of the tetra-μ-phenolatotetrazinc(II) centers.  相似文献   

9.
The structures of different Cu(II)-thiol, dithiocarbamate, methylthiourea and amino complexes have been investigated on the basis of their spectroscopic properties. The influence of the chemical structure, both the nature of the functional groups and the spacers, on the resin chelating behaviour towards Cu(II) ions in diluted solution has been evaluated. The resins are macroporous polystyrene–divinylbenzene polymer functionalized with two spacer groups, poly(ethylene glycol) and poly(ethylene imine) chains, supporting thiol, dithiocarbamate, methylthiourea and amino groups. Electron paramagnetic resonance (EPR) was employed to show the coordination of Cu(II) ions into the complexes. Cu(II)-dithiocarbamate complexes have a square planar coordination with two dithiocarbamate groups bound to the metal. The resins with methylthiourea as functional group form Cu(II)-complexes in tetragonal symmetry with four nitrogen atoms as equatorial ligands. Further, a partial reduction of Cu(II) to diamagnetic Cu(I) with formation of Cu(I)-methylthiourea complexes, where copper is S-bonded to the methylthiourea group, could be suggested. In Cu(II)-thiol complexes, Cu(II) ions are bound through sulfur bridges.  相似文献   

10.
A series of thiosemicarbazone derivatives was prepared and their anti-tumor activity in vitro was tested. The X-ray investigation performed for compounds T2, T3 and T5 confirmed the synthesis pathway and assumed molecular structures of analyzed thiosemicarbazones. The conformational preferences of the thiosemicarbazone system were characterized using theoretical calculations by AM1 method. Selected compounds were converted into complexes of Cu (II) ions. The effect of complexing on anti-tumor activity has been investigated. The copper(II) complexes, with Schiff bases T1, T10, T12, T13, and T16 have been synthesized and characterized by chemical and elemental analysis, FTIR spectroscopy and TGA method. Thermal properties of coordination compounds were studied using TG-DTG techniques under dry air atmosphere. G361, A375, and SK-MEL-28 human melanoma cells and BJ human normal fibroblast cells were treated with tested compounds and their cytotoxicity was evaluated with MTT test. The compounds with the most promising anti-tumour activity were then selected and their cytotoxicity was verified with cell cycle analysis and apoptosis/necrosis detection. Additionally, DNA damages in the form of a basic sites presence and the expression of oxidative stress and DNA damage response genes were evaluated. The obtained results indicate that complexation of thiosemicarbazone derivatives with Cu (II) ions improves their antitumor activity against melanoma cells. The observed cytotoxic effect is associated with DNA damage and G2/M phase of cell cycle arrest as well as disorders of the antioxidant enzymes expression.  相似文献   

11.
We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV–Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions.  相似文献   

12.
Somatostatin analogues are useful pharmaceuticals in peptide receptor radionuclide therapy. In previous studies, we analyzed a new bicyclic somatostatin analogue (BCS) in connection with Cu(II) ions. Two characteristic sites were present in the peptide chain: the receptor- and the metal-binding site. We have already shown that this ligand can form very stable imidazole complexes with the metal ion. In this work, our aim was to characterize the intramolecular interaction that occurs in the peptide molecule. Therefore, we analyzed the coordination abilities of two cyclic ligands, i.e., P1 only with the metal binding site and P2 with both sites, but without the disulfide bond. Furthermore, we used magnetic circular dichroism (MCD) spectroscopy to better understand the coordination process. We applied this method to analyze spectra of P1, P2, and BCS, which we have described previously. Additionally, we analyzed the MCD spectra of P3 ligand, which has only the receptor binding site in its structure. We have unequivocally shown that the presence of the Phe-Trp-Lys-Thr motif and the disulfide bond significantly increases the metal binding efficiency.  相似文献   

13.
A novel family of tetraaza macrocyclic Cu(II) complexes [CuLX(2)] (where L = N(4) donor macrocyclic ligands) and (X = Cl(-), NO(3) (-)) have been synthesized and characterized by elemental analysis, magnetic moments, IR, EPR, mass, electronic spectra and thermal studies. The magnetic moments and electronic spectral studies suggest square planar geometry for [Cu(DBACDT)]Cl(2) and [Cu(DBACDT)](NO(3))(2) complexes and distorted octahedral geometry to the rest of the ten complexes. The biological activity of all these complexes against gram-positive and gram-negative bacteria was compared with the activity of existing commercial antibacterial compounds like Linezolid and Cefaclor. Six complexes out of twelve were found to be most potent against both gram-positive as well as gram-negative bacteria due to the presence of thio group in the coordinated ligands.  相似文献   

14.
The constantly growing resistance of bacteria to antibiotics and other antibacterial substances has led us to an era in which alternative antimicrobial therapies are urgently required. One promising approach is to target bacterial pathogens using metal complexes. Therefore, we investigated the possibility of utilizing series of manganese(II) complexes with heteroaromatic ligands: Alcohol, aldehyde, ketone, and carboxylic acid as inhibitors for biofilm formation of Pseudomonas aeruginosa. To complete the series mentioned above, Mn-dipyCO-NO3 with dipyridin-2-ylmethanone (dipyCO) was isolated, and then structurally (single-crystal X-ray analysis) and physicochemically characterized (FT-IR, TG, CV, magnetic susceptibility). The antibacterial activity of the compounds against representative Gram-negative and Gram-positive bacteria was also evaluated. It is worth highlighting that the results of the cytotoxicity assays performed (MTT, DHI HoloMonitorM4) indicate high cell viability of the human fibroblast (VH10) in the presence of the Mn(II) complexes. Additionally, the inhibition effect of catalase activity by the complexes was studied. This paper focused on such aspects as studying different types of intermolecular interactions in the crystals of the Mn(II) complexes as well as their possible effect on anti-biofilm activity, the structure–activity relationship of the Mn(II) complexes, and regularity between the electrochemical properties of the Mn(II) complexes and anti-biofilm activity.  相似文献   

15.
2-[4-(Methylthio)phenyl]-2,3-dihydro-1,3-benzothiazole (1) and bis[4-(methylthio)phenylmethylene-aminophenyl] disulfide (2) were synthesized. Novel coordination compounds of Ni(II) and Co(II) with 2-[4-(methylthio)phenylmethyleneamino]thiophenol, M(1)2 (M=Co (3); M=Ni (4)), were prepared by reacting 1 with M(OAc)2·6H2O or MCl2·6H2O in EtOH solution. The structure of 2 was proved by X-ray crystallography. Electrochemical behavior of 1–4 in CH3CN solution and at the surface of a gold electrode was studied by cyclic voltammetry. The modification of the electrode by ligand 1 and its complexes with Ni2+ and Co2+ is described in detail. Two procedures were used to obtain a self-assembled monolayer of a metal complex on the gold surface: the adsorption of prepared coordination compound 3 or 4 on the electrode and the initial modification of the electrode with ligand 1 followed by the formation of a coordination complex between the ligand adsorbed on the electrode and a metal salt occurring in solution. On the basis of the electrochemical data, it was found that the structure of complexes formed on the surface differs from that of the complexes produced in solution.  相似文献   

16.
Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity.  相似文献   

17.
Prodigiosenes are a family of red pigments with versatile biological activity. Their tripyrrolic core structure has been modified many times in order to manipulate the spectrum of activity. We have been looking systematically at prodigiosenes substituted at the C ring with alkyl chains of different lengths, in order to assess the relevance of this substituent in a context that has not been investigated before for these derivatives: Cu(II) complexation, DNA binding, self-activated DNA cleavage, photoinduced cytotoxicity and antimicrobial activity. Our results indicate that the hydrophobic substituent has a clear influence on the different aspects of their biological activity. The cytotoxicity study of the Cu(II) complexes of these prodigiosenes shows that they exhibit a strong cytotoxic effect towards the tested tumor cell lines. The Cu(II) complex of a prodigiosene lacking any alkyl chain excelled in its photoinduced anticancer activity, thus demonstrating the potential of prodigiosenes and their metal complexes for an application in photodynamic therapy (PDT). Two derivatives along with their Cu(II) complexes showed also antimicrobial activity against Staphylococcus aureus strains.  相似文献   

18.
Oligomeric polyester, namely, poly(tetramethylene aspartate) (PTMA), was synthesized from D ,L -aspartic acid and 1,4-butanediol by a melt-condensation technique. Polyester–metal complexes were synthesized by the reaction of PTMA with hydrated acetates of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), Mg(II), Ca(II), Pb(II), and Ce(IV) in DMSO. The polyester–metal complexes were characterized by elemental analysis, IR spectral studies, magnetic susceptibility measurements, and thermogravimetry. The metal ions were found to be six-coordinated with two water molecules as additional ligands besides oxygen and nitrogen atoms of polyester repeating units. Thermogravimetric analysis (TGA) showed that coordination polymers are thermally more stable than is polyester. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 751–759, 1998  相似文献   

19.
The present work describes the complexation properties of two oxime-containing Schiff bases (used as ligands), viz. 2-hydroxyimino-N′-[1-(2-pyridyl)ethylidene]propanohydrazone (Hpop) and 2-hydroxyimino-N′-[(pyridine-2-yl)methylidene]propanohydrazone (Hpoa), with Co(II) ions in DMSO/water solution. Volumetric (oxygenation) studies were carried out to determine the uptake of molecular oxygen O2 in the formation of the complexes Co(II)-Hpop and Co(II)-Hpoa. The acquired data can be useful in the development of oxygen bioinorganic complexes of metal ions with Schiff base ligands in solution. Their properties allow them to be used as synthetic oxygen transporters. Moreover, the binding of dioxygen could play an important role in the research of catalytic activity by such systems.  相似文献   

20.
Ionic liquids (ILs) on the basis of metal containing anions and/or cations are of interest for a variety of technical applications e.g., synthesis of particles, magnetic or thermochromic materials. We present the synthesis and the results of electron paramagnetic resonance (EPR) spectroscopic analyses of a series of some new potential ionic liquids based on tetrachloridocuprates(II), [CuCl(4)](2-), with different sterically demanding cations: hexadecyltrimethylammonium 1, tetradecyltrimethylammonium 2, tetrabutylammonium 3 and benzyltriethylammonium 4. The cations in the new compounds were used to achieve a reasonable separation of the paramagnetic Cu(II) ions for EPR spectroscopy. The EPR hyperfine structure was not resolved. This is due to the exchange broadening, resulting from still incomplete separation of the paramagnetic Cu(II) centers. Nevertheless, the principal values of the electron Zeemann tensor (g(║) and g(┴)) of the complexes could be determined. Even though the solid substances show slightly different colors, the UV/Vis spectra are nearly identical, indicating structural changes of the tetrachloridocuprate moieties between solid state and solution. The complexes have a promising potential e.g., as high temperature ionic liquids, as precursors for the formation of copper chloride particles or as catalytic paramagnetic ionic liquids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号