首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
As inhabitants of soda lakes, Thioalkalivibrio versutus are halo- and alkaliphilic bacteria that have previously been shown to respire with the first demonstrated Na+-translocating cytochrome-c oxidase (CO). The enzyme generates a sodium-motive force (Δs) as high as −270 mV across the bacterial plasma membrane. However, in these bacteria, operation of the possible Δs consumers has not been proven. We obtained motile cells and used them to study the supposed Na+ energetic cycle in these bacteria. The resulting motility was activated in the presence of the protonophore 2-heptyl-4-hydroxyquinoline N-oxide (HQNO), in line with the same effect on cell respiration, and was fully blocked by amiloride—an inhibitor of Na+-motive flagella. In immotile starving bacteria, ascorbate triggered CO-mediated respiration and motility, both showing the same dependence on sodium concentration. We concluded that, in T. versutus, Na+-translocating CO and Na+-motive flagella operate in the Na+ energetic cycle mode. Our research may shed light on the energetic reason for how these bacteria are confined to a narrow chemocline zone and thrive in the extreme conditions of soda lakes.  相似文献   

2.
Soybean (Glycine max) is an economically important crop which is very susceptible to salt stress. Tolerance to Na2SO4 stress was evaluated in soybean plants overexpressing or suppressing the phytoglobin GmPgb1. Salt stress depressed several gas exchange parameters, including the photosynthetic rate, caused leaf damage, and reduced the water content and dry weights. Lower expression of respiratory burst oxidase homologs (RBOHB and D), as well as enhanced antioxidant activity, resulting from GmPgb1 overexpression, limited ROS-induced damage in salt-stressed leaf tissue. The leaves also exhibited higher activities of the H2O2-quenching enzymes, catalase (CAT) and ascorbate peroxidase (APX), as well as enhanced levels of ascorbic acid. Relative to WT and GmPgb1-suppressing plants, overexpression of GmPgb1 attenuated the accumulation of foliar Na+ and exhibited a lower Na+/K+ ratio. These changes were attributed to the induction of the Na+ efflux transporter SALT OVERLY SENSITIVE 1 (SOS1) limiting Na+ intake and transport and the inward rectifying K+ channel POTASSIUM TRANSPORTER 1 (AKT1) required for the maintenance of the Na+/K+ balance.  相似文献   

3.
Na+/H+ exchangers are essential for Na+ and pH homeostasis in all organisms. Human Na+/H+ exchangers are of high medical interest, and insights into their structure and function are aided by the investigation of prokaryotic homologues. Most prokaryotic Na+/H+ exchangers belong to either the Cation/Proton Antiporter (CPA) superfamily, the Ion Transport (IT) superfamily, or the Na+-translocating Mrp transporter superfamily. Several structures have been solved so far for CPA and Mrp members, but none for the IT members. NhaA from E. coli has served as the prototype of Na+/H+ exchangers due to the high amount of structural and functional data available. Recent structures from other CPA exchangers, together with diverse functional information, have allowed elucidation of some common working principles shared by Na+/H+ exchangers from different families, such as the type of residues involved in the substrate binding and even a simple mechanism sufficient to explain the pH regulation in the CPA and IT superfamilies. Here, we review several aspects of prokaryotic Na+/H+ exchanger structure and function, discussing the similarities and differences between different transporters, with a focus on the CPA and IT exchangers. We also discuss the proposed transport mechanisms for Na+/H+ exchangers that explain their highly pH-regulated activity profile.  相似文献   

4.
5.
6.
Mice lacking functional thyroid follicular cells, Pax8−/− mice, die early postnatally, making them suitable models for extreme hypothyroidism. We have previously obtained evidence in postnatal rat neurons, that a down-regulation of Na+-current density could explain the reduced excitability of the nervous system in hypothyroidism. If such a mechanism underlies the development of coma and death in severe hypothyroidism, Pax8−/− mice should show deficits in the expression of Na+ currents and potentially also in the expression of Na+/K+-ATPases, which are necessary to maintain low intracellular Na+ levels. We thus compared Na+ current densities in postnatal mice using the patch-clamp technique in the whole-cell configuration as well as the expression of three alpha and two beta-subunits of the Na+/K+-ATPase in wild type versus Pax8−/− mice. Whereas the Na+ current density in hippocampal neurons from wild type mice was upregulated within the first postnatal week, the Na+ current density remained at a very low level in hippocampal neurons from Pax8−/− mice. Pax8−/− mice also showed significantly decreased protein expression levels of the catalytic α1 and α3 subunits of the Na+/K+-ATPase as well as decreased levels of the β2 isoform, with no changes in the α2 and β1 subunits.  相似文献   

7.
Halophytes species can be used as a highly convenient model system to reveal key ionic and molecular mechanisms that confer salinity tolerance in plants. Earlier, we reported that quinoa (Chenopodium quinoa Willd.), a facultative C3 halophyte species, can efficiently control the activity of slow (SV) and fast (FV) tonoplast channels to match specific growth conditions by ensuring that most of accumulated Na+ is safely locked in the vacuole (Bonales-Alatorre et al. (2013) Plant Physiology). This work extends these finding by comparing the properties of tonoplast FV and SV channels in two quinoa genotypes contrasting in their salinity tolerance. The work is complemented by studies of the kinetics of net ion fluxes across the plasma membrane of quinoa leaf mesophyll tissue. Our results suggest that multiple mechanisms contribute towards genotypic differences in salinity tolerance in quinoa. These include: (i) a higher rate of Na+ exclusion from leaf mesophyll; (ii) maintenance of low cytosolic Na+ levels; (iii) better K+ retention in the leaf mesophyll; (iv) a high rate of H+ pumping, which increases the ability of mesophyll cells to restore their membrane potential; and (v) the ability to reduce the activity of SV and FV channels under saline conditions. These mechanisms appear to be highly orchestrated, thus enabling the remarkable overall salinity tolerance of quinoa species.  相似文献   

8.
Certain anaerobic bacterial species tend to predominate the vaginal flora during bacterial vaginosis (BV), with Gardnerella vaginalis being the most common. However, the exact role of G. vaginalis in BV has not yet been determined. The main goal of this study was to test the hypothesis that G. vaginalis is an early colonizer, paving the way for intermediate (e.g., Fusobacterium nucleatum) and late colonizers (e.g., Prevotella bivia). Theoretically, in order to function as an early colonizer, species would need to be able to adhere to vaginal epithelium, even in the presence of vaginal lactobacilli. Therefore, we quantified adherence of G. vaginalis and other BV-associated bacteria to an inert surface pre-coated with Lactobacillus crispatus using a new Peptide Nucleic Acid (PNA) Fluorescence In Situ Hybridization (FISH) methodology. We found that G. vaginalis had the greatest capacity to adhere in the presence of L. crispatus. Theoretically, an early colonizer would contribute to the adherence and/or growth of additional species, so we next quantified the effect of G. vaginalis biofilms on the adherence and growth of other BV-associated species by quantitative Polymerase Chain Reaction (qPCR) technique. Interestingly, G. vaginalis derived a growth benefit from the addition of a second species, regardless of the species. Conversely, G. vaginalis biofilms enhanced the growth of P. bivia, and to a minor extent of F. nucleatum. These results contribute to our understanding of BV biofilm formation and the progression of the disorder.  相似文献   

9.
10.
Monensin is an ionophore for monovalent cations, which is frequently used to prevent ketosis and to enhance performance in dairy cows. Studies have shown the rumen bacteria Prevotella bryantii B14 being less affected by monensin. The present study aimed to reveal more information about the respective molecular mechanisms in P. bryantii, as there is still a lack of knowledge about defense mechanisms against monensin. Cell growth experiments applying increasing concentrations of monensin and incubations up to 72 h were done. Harvested cells were used for label-free quantitative proteomics, enzyme activity measurements, quantification of intracellular sodium and extracellular glucose concentrations and fluorescence microscopy. Our findings confirmed an active cell growth and fermentation activity of P. bryantii B14 despite monensin concentrations up to 60 µM. An elevated abundance and activity of the Na+-translocating NADH:quinone oxidoreductase counteracted sodium influx caused by monensin. Cell membranes and extracellular polysaccharides were highly influenced by monensin indicated by a reduced number of outer membrane proteins, an increased number of certain glucoside hydrolases and an elevated concentration of extracellular glucose. Thus, a reconstruction of extracellular polysaccharides in P. bryantii in response to monensin is proposed, which is expected to have a negative impact on the substrate binding capacities of this rumen bacterium.  相似文献   

11.
Carbamazepine (CBZ, Tegretol®) is an anticonvulsant used in the treatment of epilepsy and neuropathic pain; however, several unwanted effects of this drug have been noticed. Therefore, the regulatory actions of CBZ on ionic currents in electrically excitable cells need to be reappraised, although its efficacy in suppressing voltage-gated Na+ current (INa) has been disclosed. This study was undertaken to explore the modifications produced by CBZ on ionic currents (e.g., INa and erg-mediated K+ current [IK(erg)]) measured from Neuro-2a (N2a) cells. In these cells, we found that this drug differentially suppressed the peak (transient, INa(T)) and sustained (late, INa(L)) components of INa in a concentration-dependent manner with effective IC50 of 56 and 18 μM, respectively. The overall current–voltage relationship of INa(T) with or without the addition of CBZ remained unchanged; however, the strength (i.e., ∆area) in the window component of INa (INa(W)) evoked by the short ascending ramp pulse (Vramp) was overly lessened in the CBZ presence. Tefluthrin (Tef), a synthetic pyrethroid, known to stimulate INa, augmented the strength of the voltage-dependent hysteresis (Hys(V)) of persistent INa (INa(P)) in response to the isosceles-triangular Vramp; moreover, further application of CBZ attenuated Tef-mediated accentuation of INa(P)’s Hys(V). With a two-step voltage protocol, the recovery of INa(T) inactivation seen in Neuro-2a cells became progressively slowed by adding CBZ; however, the cumulative inhibition of INa(T) evoked by pulse train stimulation was enhanced during exposure to this drug. Neuro-2a-cell exposure to CBZ (100 μM), the magnitude of erg-mediated K+ current measured throughout the entire voltage-clamp steps applied was mildly inhibited. The docking results regarding the interaction of CBZ and voltage-gate Na+ (NaV) channel predicted the ability of CBZ to bind to some amino-acid residues in NaV due to the existence of a hydrogen bond or hydrophobic contact. It is conceivable from the current investigations that the INa (INa(T), INa(L), INa(W), and INa(P)) residing in Neuro-2a cells are susceptible to being suppressed by CBZ, and that its block on INa(L) is larger than that on INa(T). Collectively, the magnitude and gating of NaV channels produced by the CBZ presence might have an impact on its anticonvulsant and analgesic effects occurring in vivo.  相似文献   

12.
Grain legumes are important crops, but they are salt sensitive. This research dissected the responses of four (sub)tropical grain legumes to ionic components (Na+ and/or Cl) of salt stress. Soybean, mungbean, cowpea, and common bean were subjected to NaCl, Na+ salts (without Cl), Cl salts (without Na+), and a “high cation” negative control for 57 days. Growth, leaf gas exchange, and tissue ion concentrations were assessed at different growing stages. For soybean, NaCl and Na+ salts impaired seed dry mass (30% of control), more so than Cl salts (60% of control). All treatments impaired mungbean growth, with NaCl and Cl salt treatments affecting seed dry mass the most (2% of control). For cowpea, NaCl had the greatest adverse impact on seed dry mass (20% of control), while Na+ salts and Cl salts had similar intermediate effects (~45% of control). For common bean, NaCl had the greatest adverse effect on seed dry mass (4% of control), while Na+ salts and Cl salts impaired seed dry mass to a lesser extent (~45% of control). NaCl and Na+ salts (without Cl) affected the photosynthesis (Pn) of soybean more than Cl salts (without Na+) (50% of control), while the reverse was true for mungbean. Na+ salts (without Cl), Cl salts (without Na+), and NaCl had similar adverse effects on Pn of cowpea and common bean (~70% of control). In conclusion, salt sensitivity is predominantly determined by Na+ toxicity in soybean, Cl toxicity in mungbean, and both Na+ and Cl toxicity in cowpea and common bean.  相似文献   

13.
14.
Columbianadin (CBN) is a bioactive coumarin-type compound with various biological activities. However, the action of CBN on the ionic mechanism remains largely uncertain, albeit it was reported to inhibit voltage-gated Ca2+ current or to modulate TRP-channel activity. In this study, whole-cell patch-clamp current recordings were undertaken to explore the modifications of CBN or other related compounds on ionic currents in excitable cells (e.g., pituitary GH3 cells and HL-1 atrial cardiomyocytes). GH3-cell exposure to CBN differentially decreased peak or late component of voltage-gated Na+ current (INa) with effective IC50 of 14.7 or 2.8 µM, respectively. The inactivation time course of INa activated by short depolarization became fastened in the presence of CBN with estimated KD value of 3.15 µM. The peak INa diminished by 10 µM CBN was further suppressed by subsequent addition of either sesamin (10 µM), ranolazine (10 µM), or tetrodotoxin (1 µM), but it was reversed by 10 µM tefluthrin (Tef); however, further application of 10 µM nimodipine failed to alter CBN-mediated inhibition of INa. CBN (10 µM) shifted the midpoint of inactivation curve of INa to the leftward direction. The CBN-mediated inhibition of peak INa exhibited tonic and use-dependent characteristics. Using triangular ramp pulse, the hysteresis of persistent INa enhanced by Tef was noticed, and the behavior was attenuated by subsequent addition of CBN. The delayed-rectifier or erg-mediated K+ current was mildly inhibited by 10 µM CBN, while it also slightly inhibited the amplitude of hyperpolarization-activated cation current. In HL-1 atrial cardiomyocytes, CBN inhibited peak INa and raised the inactivation rate of the current; moreover, further application of 10 µM Tef attenuated CBN-mediated decrease in INa. Collectively, this study provides an important yet unidentified finding revealing that CBN modifies INa in electrically excitable cells.  相似文献   

15.
Gomisin A (Gom A), a lignan isolated from Schisandra chinensis, has been reported produce numerous biological activities. However, its action on the ionic mechanisms remains largely unanswered. The present experiments were undertaken to investigate the possible perturbations of Gom A or other related compounds on different types of membrane ionic currents in electrically excitable cells (i.e., pituitary GH3 and pancreatic INS-1 cells). The exposure to Gom A led to the differential inhibition of peak and end-pulse components of voltage-gated Na+ current (INa) in GH3 cells with effective IC50 of 6.2 and 0.73 μM, respectively. The steady-state inactivation curve of INa in the presence of Gom A was shifted towards a more hyperpolarized potential. However, neither changes in the overall current-voltage relationship nor those for the gating charge of the current were demonstrated. The application of neither morin (10 μM) nor hesperidin (10 μM) perturbed the strength of INa, while sesamine could suppress it. However, in the continued presence of Gom A, the addition of sesamine failed to suppress INa further. Gom A also effectively suppressed the strength of persistent INa activated by long ramp voltage command, and further application of tefluthrin effectively attenuated Gom A-mediated inhibition of the current. The presence of Gom A mildly inhibited erg-mediated K+ current, while a lack of change in the amplitude of hyperpolarization-activated cation current was observed in its presence. Under cell-attached current recordings, the exposure to Gom A resulted in the decreased firing of spontaneous action currents with a minimal change in AC amplitude. In pancreatic INS-1 cells, the presence of Gom A was also noticed to inhibit peak and end-pulse components of INa differentially with the IC50 of 5.9 and 0.84 μM, respectively. Taken together, the emerging results presented herein provide the evidence that Gom A can differentially inhibit peak and sustained INa in endocrine cells (e.g., GH3 and INS-1 cells).  相似文献   

16.
The mammalian Na+/H+ exchanger isoform 1 (NHE1) is a plasma membrane protein ubiquitously present in humans. It regulates intracellular pH by removing an intracellular proton in exchange for an extracellular sodium. It consists of a 500 amino acid membrane domain plus a 315 amino acid, regulatory cytosolic tail. Here, we investigated the effect of mutation of two amino acids of the regulatory tail, Ser785 and Ser787, that were similar in location and context to two amino acids of the Arabidopsis Na+/H+ exchanger SOS1. Mutation of these two amino acids to either Ala or phosphomimetic Glu did not affect surface targeting but led to a slight reduction in the level of protein expressed. The activity of the NHE1 protein was reduced in the phosphomimetic mutations and the effect was due to a decrease in Vmax activity. The Ser to Glu mutations also caused a change in the apparent molecular weight of both the full-length protein and of the cytosolic tail of NHE1. A conformational change in this region was indicated by differential trypsin sensitivity. We also found that a peptide containing amino acids 783–790 bound to several more proximal regions of the NHE1 tail in in vitro protein interaction experiments. The results are the first characterization of these two amino acids and show that they have significant effects on enzyme kinetics and the structure of the NHE1 protein.  相似文献   

17.
The effect of a cellular prion protein (PrPc) deficiency on neuroenergetics was primarily analyzed via surveying the expression of genes specifically involved in lactate/pyruvate metabolism, such as monocarboxylate transporters (MCT1, MCT2, MCT4). The aim of the present study was to elucidate a potential involvement of PrPc in the regulation of energy metabolism in different brain regions. By using quantitative real-time polymerase chain reaction (qRT-PCR), we observed a marked reduction in MCT1 mRNA expression in the cortex of symptomatic Zürich I Prnp−/− mice, as compared to their wild-type (WT) counterparts. MCT1 downregulation in the cortex was accompanied with significantly decreased expression of the MCT1 functional interplayer, the Na+/K+ ATPase α2 subunit. Conversely, the MCT1 mRNA level was significantly raised in the cerebellum of Prnp−/− vs. WT control group, without a substantial change in the Na+/K+ ATPase α2 subunit expression. To validate the observed mRNA findings, we confirmed the observed change in MCT1 mRNA expression level in the cortex at the protein level. MCT4, highly expressed in tissues that rely on glycolysis as an energy source, exhibited a significant reduction in the hippocampus of Prnp−/− vs. WT mice. The present study demonstrates that a lack of PrPc leads to altered MCT1 and MCT4 mRNA/protein expression in different brain regions of Prnp−/− vs. WT mice. Our findings provide evidence that PrPc might affect the monocarboxylate intercellular transport, which needs to be confirmed in further studies.  相似文献   

18.
DNA G-quadruplexes (G4s) are non-canonical four-stranded DNA structures involved in various biological processes in eukaryotes. Molecularly crowded solutions and monovalent cations have been reported to stabilize in vitro and in vivo G4 formation. However, how K+ and Na+ affect G4 formation genome-wide is still unclear in plants. Here, we conducted BG4-DNA-IP-seq, DNA immunoprecipitation with anti-BG4 antibody coupled with sequencing, under K+ and Na+ + PEG conditions in vitro. We found that K+-specific IP-G4s had a longer peak size, more GC and PQS content, and distinct AT and GC skews compared to Na+-specific IP-G4s. Moreover, K+- and Na+-specific IP-G4s exhibited differential subgenomic enrichment and distinct putative functional motifs for the binding of certain trans-factors. More importantly, we found that K+-specific IP-G4s were more associated with active marks, such as active histone marks, and low DNA methylation levels, as compared to Na+-specific IP-G4s; thus, K+-specific IP-G4s in combination with active chromatin features facilitate the expression of overlapping genes. In addition, K+- and Na+-specific IP-G4 overlapping genes exhibited differential GO (gene ontology) terms, suggesting they may have distinct biological relevance in rice. Thus, our study, for the first time, explores the effects of K+ and Na+ on global G4 formation in vitro, thereby providing valuable resources for functional G4 studies in rice. It will provide certain G4 loci for the biotechnological engineering of rice in the future.  相似文献   

19.
Novel superabsorbent composites based on sodium alginate-graft-acrylic acid (SA-g-AA) and Na+rectorite (Na+REC), i.e., SA-g-AA/Na+REC, were developed. The effect of the preparative conditions on the absorption of water was investigated. The structure and morphology were analyzed by infrared spectroscopy, X-ray diffraction, transmission electron microscopy and scanning electron microscopy. The results revealed that the optimal condition was 10, 0.8, and 0.03 wt% of SA/Na+REC, potassium persulphate and MBA, respectively. The absorbency of SA-g-AA/Na+REC was 641 g/g for water, or 115 g/g for 0.9 % NaCl solution. Compared to SA-g-PAA, the absorption of SA-g-AA/Na+REC composites in water and many water/inorganic salt solutions increased greatly. In addition, the thermal stability of the SA-g-AA/Na+REC composites improved, which indicated that the participation of Na+REC improved not only the equilibrium water absorbency, swelling rate and salt-resistant properties, but also the thermal stability of SA-g-AA.  相似文献   

20.
Piezoelectric energy harvesting is the most widely investigated technology for renewable energy applications. In this work, (1-x)(Na0.5K0.5)NbO3-xLiSbO3 piezoelectric ceramics were prepared through conventional mixed oxide fabrication methods with different sintering temperatures. Although the (Na0.5K0.5)NbO3 piezoelectric material is representative among the lead-free ceramics, it is difficult to densify by typical sintering techniques owing to its easy evaporation properties of potassium (K+) and sodium ion (Na+). Hence, lithium (Li+) and antimony ion (Sb5+) were used for the partial substitution of (Na0.5K0.5)NbO3. With the optimized sintering temperature, Li+ and Sb5+ are expected to be crucial in increasing the density and enhance the piezoelectric and ferroelectric properties. In this study, the phase, microstructure, and dielectric and electrical properties of (1-x)(Na0.5K0.5)NbO3-xLiSbO3 ceramics depending on the sintering temperature is examined by employing X-ray diffraction, field emission scanning electron microscopy, impedance analyzer, and mechanical force system for energy harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号