首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthracyclines remain a cornerstone of induction chemotherapy for acute myeloid leukemia (AML). Refractory or relapsed disease due to chemotherapy resistance is a major obstacle in AML management. MicroRNAs (miRNAs) have been observed to be involved in chemoresistance. We previously observed that miR-15a-5p was overexpressed in a subgroup of chemoresistant cytogenetically normal AML patients compared with chemosensitive patients treated with daunorubicin and cytarabine. MiR-15a-5p overexpression in AML cells reduced apoptosis induced by both drugs in vitro. This study aimed to elucidate the mechanisms by which miR-15a-5p contributes to daunorubicin resistance. We showed that daunorubicin induced autophagy in myeloid cell lines. The inhibition of autophagy reduced cell sensitivity to daunorubicin. The overexpression of miR-15a-5p decreased daunorubicin-induced autophagy. Conversely, the downregulation of miR-15a-5p increased daunorubicin-induced autophagy. We found that miR-15a-5p targeted four genes involved in autophagy, namely ATG9a, ATG14, GABARAPL1 and SMPD1. Daunorubicin increased the expression of these four genes, and miR-15a-5p counteracted this regulation. Inhibition experiments with the four target genes showed the functional effect of miR-15a-5p on autophagy. In summary, our results indicated that miR-15a-5p induces chemoresistance in AML cells through the abrogation of daunorubicin-induced autophagy, suggesting that miR-15a-5p could be a promising therapeutic target for chemoresistant AML patients.  相似文献   

2.
In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3′-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.  相似文献   

3.
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.  相似文献   

4.
We recently reported that an RNA binding protein called Cugbp Elav-like family member 1 (Celf1) regulates somite symmetry and left-right patterning in zebrafish. In this report, we show additional roles of Celf1 in zebrafish organogenesis. When celf1 is knocked down by using an antisense morpholino oligonucleotides (MO), liver buds fail to form, and pancreas buds do not form a cluster, suggesting earlier defects in endoderm organogenesis. As expected, we found failures in endoderm cell growth and migration during gastrulation in embryos injected with celf1-MOs. RNA immunoprecipitation revealed that Celf1 binds to gata5 and cdc42 mRNAs which are known to be involved in cell growth and migration, respectively. Our results therefore suggest that Celf1 regulates proper organogenesis of endoderm-derived tissues by regulating the expression of such targets.  相似文献   

5.
6.
We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.  相似文献   

7.
We aimed to investigate the effect of methotrexate (MTX) on microRNA modulation in rheumatoid arthritis fibroblast-like synovial cells (RA-FLS). RA-FLS were treated with MTX for 48 h. We then performed miRNA array analysis to investigate differentially expressed miRNAs. Transfection with miR-877-3p precursor and inhibitor were used to investigate the functional role of miR-877-3p in RA-FLS. Gene ontology analysis was used to investigate the cellular processes involving miR-877-3p. The production of cytokines/chemokines was screened by multiplex cytokine/chemokine bead assay and confirmed by ELISA and quantitative real-time PCR. The migratory and proliferative activities of RA-FLS were analyzed by wound healing assay and MKI-67 expression. MTX treatment altered the expression of 13 miRNAs (seven were upregulated and six were downregulated). Among them, quantitative real-time PCR confirmed that miR-877-3p was upregulated in response to MTX (1.79 ± 0.46-fold, p < 0.05). The possible target genes of miR-877-3p in RA-FLS revealed by the microarray analysis were correlated with biological processes. The overexpression of miR-877-3p decreased the production of GM-CSF and CCL3, and the overexpression of miR-877-3p inhibited migratory and proliferative activity. MTX altered the miR-877-3p expression on RA-FLS, and this alteration of miR-877-3p attenuated the abundant production of cytokines/chemokines and proliferative property of RA-FLS.  相似文献   

8.
To determine the relationships between miR-96-5p/-182-5p and GPC1 in pancreatic cancer (PC), we conducted the population and in vitro studies. We followed 38 pancreatic cancer patients, measured and compared the expression of miR-96-5p/-182-5p, GPC1, characteristics and patients’ survival time of different miR-96-5p/-182-5p expression levels in PC tissues. In an in vitro study, we investigated the proliferation, cycle and apotosis in cells transfected with mimics/inhibitors of the two miRNAs, and determine their effects on GPC1 by dual-luciferase assay. In the follow-up study, we found that the expressions of miR-96-5p/-182-5p were lower/higher in PC tissues; patients with lower/higher levels of miR-96-5p/-182-5p suffered poorer characteristics and decreased survival time. In the in vitro study, the expressions of miR-96-5p/-182-5p were different in cells. Proliferation of cells transfected with miR-96-5p mimics/inhibitors was lower/higher in Panc-1/BxPC-3; when transfected with miR-182-5p mimics/inhibitors, proliferation of cells were higher/lower in AsPC-1/Panc-1. In a cell cycle study, panc-1 cells transfected with miR-96-5p mimics was arrested at G0/G1; BxPC-3 cells transfected with miR-96-5p inhibitors showed a significantly decrease at G0/G1; AsPC-1 cells transfected with miR-182-5p mimics was arrested at S; Panc-1 cells transfected with miR-182-5p inhibitors showed a decrease at S. MiR-96-5p mimics increased the apoptosis rate in Panc-1 cells, and its inhibitors decreased the apoptosis rate in BxPC-3. Dual luciferase assay revealed that GPC1 was regulated by miR-96-5p, not -182-5p. We found that miR-96-5p/-182-5p as good markers for PC; miR-96-5p, rather than -182-5p, inhibits GPC1 to suppress proliferation of PC cells.  相似文献   

9.
Penile cancer (PeC) is a rare disease, and no prognostic biomarkers have been adopted in clinical practice yet. The objective of the present study was to identify differentially expressed miRNAs (DEmiRs) and genes (DEGs) as potential biomarkers for lymph node metastasis and other prognostic factors in PeC. Tumor samples were prospectively obtained from 24 patients with squamous cell carcinoma of the penis. miRNA microarray analysis was performed comparing tumors from patients with inguinal lymph node metastatic and localized disease, and the results were validated by qRT-PCR. Eighty-three gene expression levels were also compared between groups through qRT-PCR. Moreover, DEmiRs and DEGs expression levels were correlated with clinicopathological variables, cancer-specific (CSS), and overall survival (OS). TAC software, TM4 MeV 4.9 software, SPSS v.25.0, and R software v.4.0.2 were used for statistical analyses. We identified 21 DEmiRs in microarray analysis, and seven were selected for validation. miR-744-5p and miR-421 were overexpressed in tissue samples of metastatic patients, and high expression of miR-421 was also associated with lower OS. We found seven DEGs (CCND1, EGFR, ENTPD5, HOXA10, IGF1R, MYC, and SNAI2) related to metastatic disease. A significant association was found between increased MMP1 expression and tumor size, grade, pathological T stage, and perineural invasion. Other genes were also associated with clinicopathological variables, CSS and OS. Finally, we found changes in mRNA–miRNA regulation that contribute to understanding the mechanisms involved in tumor progression. Therefore, we identified miRNA and mRNA expression profiles as potential biomarkers associated with lymph node metastasis and prognosis in PeC, in addition to disruption in mRNA–miRNA regulation during disease progression.  相似文献   

10.
MicroRNAs (miRNAs) are a class of small, noncoding RNAs that act as key regulators in various physiological and pathological processes. However, the regulatory mechanisms for miRNAs in colorectal cancer remain largely unknown. Here, we found that miR-103 is up-regulated in colorectal cancer and its overexpression is closely associated with tumor proliferation and migration. In addition, repressing the expression of miR-103 apparently inhibits colorectal cancer cell proliferation and migration in vitro and HCT-116 xenograft tumor growth in vivo. Subsequent software analysis and dual-luciferase reporter assay identified two tumor suppressor genes DICER and PTEN as direct targets of miR-103, and up-regulation of DICER and PTEN obtained similar results to that occurred in the silencing of miR-103. In addition, restoration of DICER and PTEN can inhibit miR-103-induced colorectal cancer cell proliferation and migration. Our data collectively demonstrate that miR-103 is an oncogene miRNA that promotes colorectal cancer proliferation and migration through down-regulation of the tumor suppressor genes DICER and PTEN. Thus, miR-103 may represent a new potential diagnostic and therapeutic target for colorectal cancer treatment.  相似文献   

11.
Recently, our studies revealed that some passenger strands of microRNAs (miRNAs) were closely involved in cancer pathogenesis. Analysis of miRNA expression signatures showed that the expression of miR-30e-3p (the passenger strand of pre-miR-30e) was significantly downregulated in cancer tissues. In this study, we focused on miR-30e-3p (the passenger strand of pre-miR-30e). We addressed target genes controlled by miR-30e-3p that were closely associated with the molecular pathogenesis of head and neck squamous cell carcinoma (HNSCC). Ectopic expression assays demonstrated that the expression of miR-30e-3p attenuated cancer cell malignant phenotypes (e.g., cell proliferation, migration, and invasive abilities). Our analysis of miR-30e-3p targets revealed that 11 genes (ADA, CPNE8, C14orf126, ERGIC2, HMGA2, PLS3, PSMD10, RALB, SERPINE1, SFXN1, and TMEM87B) were expressed at high levels in HNSCC patients. Moreover, they significantly predicted the short survival of HNSCC patients based on 5-year overall survival rates (p < 0.05) in The Cancer Genome Atlas (TCGA). Among these targets, SERPINE1 was found to be an independent prognostic factor for patient survival (multivariate Cox regression; hazard ratio = 1.6078, p < 0.05). Aberrant expression of SERPINE1 was observed in HNSCC clinical samples by immunohistochemical analysis. Functional assays by targeting SERPINE1 expression revealed that the malignant phenotypes (e.g., proliferation, migration, and invasion abilities) of HNSCC cells were suppressed by the silencing of SERPINE1 expression. Our miRNA-based approach will accelerate our understanding of the molecular pathogenesis of HNSCC.  相似文献   

12.
MicroRNAs (miRNAs) can be secreted into body fluids and have thus been reported as a new type of cancer biomarker. This study aimed to determine whether urinary miRNAs act as noninvasive biomarkers for diagnosing bladder cancer. Small RNA profiles from urine were generated for 10 patients with bladder cancer and 10 healthy controls by using next-generation sequencing. We identified 50 urinary miRNAs that were differentially expressed in bladder cancer compared with controls, comprising 44 upregulated and six downregulated miRNAs. Pathway enrichment analysis revealed that the biological role of these differentially expressed miRNAs might be involved in cancer-associated signaling pathways. Further analysis of the public database revealed that let-7b-5p, miR-149-5p, miR-146a-5p, miR-193a-5p, and miR-423-5p were significantly increased in bladder cancer compared with corresponding adjacent normal tissues. Furthermore, high miR-149-5p and miR-193a-5p expression was significantly correlated with poor overall survival in patients with bladder cancer. The qRT-PCR approach revealed that the expression levels of let-7b-5p, miR-149-5p, miR-146a-5p and miR-423-5p were significantly increased in the urine of patients with bladder cancer compared with those of controls. Although our results indicated that urinary miRNAs are promising biomarkers for diagnosing bladder cancer, this must be validated in larger cohorts in the future.  相似文献   

13.
14.
Epithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA. The main goal of our study was to detect differences in miRNA expression levels in two doxorubicin (DOX)- and two topotecan (TOP)-resistant variants of the A2780 drug-sensitive ovarian cancer cell line by miRNA microarray. The next aim was to recognize miRNAs as factors responsible for the regulation of drug-resistance genes. We observed altered expression of 28 miRNA that may be related to drug resistance. The upregulation of miR-125b-5p and miR-935 and downregulation of miR-218-5p was observed in both DOX-resistant cell lines. In both TOP-resistant cell lines, we noted the overexpression of miR-99a-5p, miR-100-5p, miR-125b-5p, and miR-125b-2-3p and decreased expression of miR-551b-3p, miR-551b-5p, and miR-383-5p. Analysis of the targets suggested that expression of important drug-resistant genes such as the collagen type I alpha 2 chain (COL1A2), protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Roundabout Guidance Receptor 2 (ROBO2), myristoylated alanine-rich C-kinase substrate (MARCK), and the ATP-binding cassette subfamily G member 2 (ABCG2) can be regulated by miRNA.  相似文献   

15.
Frontotemporal Dementia (FTD) represents a highly heritable neurodegenerative disorder. Most of the heritability is caused by autosomal dominant mutations in the Microtubule-Associated Protein Tau (MAPT), Progranulin (GRN), and the pathologic exanucleotide expansion of C9ORF72 genes. At the pathological level, either the tau or the TAR DNA-binding protein (TDP-43) account for almost all cases of FTD. Pathogenic mechanisms are just arising, and the emerging role of non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long non-coding RNAs (lncRNAs), have become increasingly evident. Using specific arrays, an exploratory analysis testing the expression levels of 84 miRNAs and 84 lncRNAs has been performed in a population consisting of 24 genetic FTD patients (eight GRN, eight C9ORF72, and eight MAPT mutation carriers), eight sporadic FTD patients, and eight healthy controls. The results showed a generalized ncRNA downregulation in patients carrying GRN and C9ORF72 when compared with the controls, with statistically significant results for the following miRNAs: miR-155-5p (Fold Change FC: 0.45, p = 0.037 FDR = 0.52), miR-15a-5p (FC: 0.13, p = 0.027, FDR = 1), miR-222-3p (FC: 0.13, p = 0.027, FDR = 0.778), miR-140-3p (FC: 0.096, p = 0.034, FRD = 0.593), miR-106b-5p (FC: 0.13, p = 0.02, FDR = 0.584) and an upregulation solely for miR-124-3p (FC: 2.1, p = 0.01, FDR = 0.893). Conversely, MAPT mutation carriers showed a generalized robust upregulation in several ncRNAs, specifically for miR-222-3p (FC: 22.3, p = 7 × 10−6, FDR = 0.117), miR-15a-5p (FC: 30.2, p = 0.008, FDR = 0.145), miR-27a-3p (FC: 27.8, p = 6 × 10−6, FDR = 0.0005), miR-223-3p (FC: 18.9, p = 0.005, FDR = 0.117), and miR-16-5p (FC: 10.9, p = 5.26 × 10−5, FDR = 0.001). These results suggest a clear, distinctive pattern of dysregulation among ncRNAs and specific enrichment gene pathways between mutations associated with the TDP-43 and tau pathologies. Nevertheless, these preliminary results need to be confirmed in a larger independent cohort.  相似文献   

16.
Metabolic adaptation to increased oxidative phosphorylation (OXPHOS) has been found in gastrointestinal stromal tumor (GIST) upon imatinib treatment. However, the underlying mechanism of imatinib-induced OXPHOS is unknown. Discovering molecules that mediate imatinib-induced OXPHOS may lead to the development of therapeutic strategies synergizing the efficacy of imatinib. In this study, we explored the role of microRNAs in regulating OXPHOS in GIST upon imatinib treatment. Using a microarray approach, we found that miR-483-3p was one of the most downregulated miRNAs in imatinib-treated tumors compared to untreated tumors. Using an extended series of GIST samples, we further validated the downregulation of miR-483-3p in imatinib-treated GIST samples by RT-qPCR. Using both gain- and loss-of-function experiments, we showed that miR-483-3p could regulate mitochondrial respiratory Complex II expression, suggesting its role in OXPHOS regulation. Functionally, miR-483-3p overexpression could rescue imatinib-induced cell death. These findings provide the molecular link for imatinib-induced OXPHOS expression and the biological role of miR-483-3p in regulating cell viability upon imatinib treatment.  相似文献   

17.
Ovarian cancer is the most lethal gynecological malignancy. The high mortality results from late diagnosis and the development of drug resistance. Drug resistance results from changes in the expression of different drug-resistance genes that may be regulated miRNA. The main aim of our study was to detect changes in miRNA expression levels in two cisplatin (CIS) and two paclitaxel (PAC)—resistant variants of the A2780 drug-sensitive ovarian cancer cell line—by miRNA microarray. The next goal was to identify miRNAs responsible for the regulation of drug-resistance genes. We observed changes in the expression of 46 miRNA that may be related to drug resistance. The overexpression of miR-125b-5p, miR-99a-5p, miR-296-3p, and miR-887-3p and downregulation of miR-218-5p, miR-221-3p, and miR-222-3p was observed in both CIS-resistant cell lines. In both PAC-resistant cell lines, we observed the upregulation of miR-221-3p, miR-222-3p, and miR-4485, and decreased expression of miR-551b-3p, miR-551b-5p, and miR-218-5p. Analysis of targets suggest that expression of important drug-resistant genes like protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Semaphorin 3A (SEMA3A), or the ATP-binding cassette subfamily B member 1 gene (ABCB1) can be regulated by miRNA.  相似文献   

18.
The involvement of non-coding RNAs (ncRNAs) in glioblastoma multiforme (GBM) pathogenesis and progression has been ascertained but their cross-talk within GBM cells remains elusive. We previously demonstrated the role of circSMARCA5 as a tumor suppressor (TS) in GBM. In this paper, we explore the involvement of circSMARCA5 in the control of microRNA (miRNA) expression in GBM. By using TaqMan® low-density arrays, the expression of 748 miRNAs was assayed in U87MG overexpressing circSMARCA5. Differentially expressed (DE) miRNAs were validated through single TaqMan® assays in: (i) U87MG overexpressing circSMARCA5; (ii) four additional GBM cell lines (A172; CAS-1; SNB-19; U251MG); (iii) thirty-eight GBM biopsies; (iv) twenty biopsies of unaffected brain parenchyma (UC). Validated targets of DE miRNAs were selected from the databases TarBase and miRTarbase, and the literature; their expression was inferred from the GBM TCGA dataset. Expression was assayed in U87MG overexpressing circSMARCA5, GBM cell lines, and biopsies through real-time PCR. TS miRNAs 126-3p and 515-5p were upregulated following circSMARCA5 overexpression in U87MG and their expression was positively correlated with that of circSMARCA5 (r-values = 0.49 and 0.50, p-values = 9 × 10−5 and 7 × 10−5, respectively) in GBM biopsies. Among targets, IGFBP2 (target of miR-126-3p) and NRAS (target of miR-515-5p) mRNAs were positively correlated (r-value = 0.46, p-value = 0.00027), while their expression was negatively correlated with that of circSMARCA5 (r-values = −0.58 and −0.30, p-values = 0 and 0.019, respectively), miR-126-3p (r-value = −0.36, p-value = 0.0066), and miR-515-5p (r-value = −0.34, p-value = 0.010), respectively. Our data identified a new GBM subnetwork controlled by circSMARCA5, which regulates downstream miRNAs 126-3p and 515-5p, and their mRNA targets IGFBP2 and NRAS.  相似文献   

19.
Thyroid cancer is the most common endocrine malignancy, and the characterization of the genetic alterations in coding-genes that drive thyroid cancer are well consolidated in MAPK signaling. In the context of non-coding RNAs, microRNAs (miRNAs) are small non-coding RNAs that, when deregulated, cooperate to promote tumorigenesis by targeting mRNAs, many of which are proto-oncogenes and tumor suppressors. In thyroid cancer, miR-146b-5p is the most overexpressed miRNA associated with tumor aggressiveness and progression, while the antisense blocking of miR-146b-5p results in anti-tumoral effect. Therefore, inactivating miR-146b has been considered as a promising strategy in thyroid cancer therapy. Here, we applied the CRISPR/Cas9n editing system to target the MIR146B gene in an aggressive anaplastic thyroid cancer (ATC) cell line. For that, we designed two single-guide RNAs cloned into plasmids to direct Cas9 nickase (Cas9n) to the genomic region of the pre-mir-146b structure to target miR-146b-5p and miR-146b-3p sequences. In this plasmidial strategy, we cotransfected pSp-Cas9n-miR-146b-GuideA-puromycin and pSp-Cas9n-miR-146b-GuideB-GFP plasmids in KTC2 cells and selected the puromycin resistant + GFP positive clones (KTC2-Cl). As a result, we observed that the ATC cell line KTC2-Cl1 showed a 60% decrease in the expression of miR-146b-5p compared to the control, also showing reduced cell viability, migration, colony formation, and blockage of tumor development in immunocompromised mice. The analysis of the MIR146B edited sequence shows a 5 nt deletion in the miR-146b-5p region and a 1 nt deletion in the miR-146b-3p region in KTC2-Cl1. Thus, we developed an effective CRISPR/Cas9n system to edit the MIR146B miRNA gene and reduce miR-146b-5p expression which constitutes a potential molecular tool for the investigation of miRNAs function in thyroid cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号