首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pathological aggregation of the presynaptic protein α-synuclein (α-syn) and propagation through synaptically coupled neuroanatomical tracts is increasingly thought to underlie the pathophysiological progression of Parkinson’s disease (PD) and related synucleinopathies. Although the precise molecular mechanisms responsible for the spreading of pathological α-syn accumulation in the CNS are not fully understood, growing evidence suggests that de novo α-syn misfolding and/or neuronal internalization of aggregated α-syn facilitates conformational templating of endogenous α-syn monomers in a mechanism reminiscent of prions. A refined understanding of the biochemical and cellular factors mediating the pathological neuron-to-neuron propagation of misfolded α-syn will potentially elucidate the etiology of PD and unravel novel targets for therapeutic intervention. Here, we discuss recent developments on the hypothesis regarding trans-synaptic propagation of α-syn pathology in the context of neuronal vulnerability and highlight the potential utility of novel experimental models of synucleinopathies.  相似文献   

2.
Parkinson’s disease (PD) is a neurodegenerative disease characterized by the loss of dopamine neurons and the deposition of misfolded proteins known as Lewy bodies (LBs), which contain α-synuclein (α-syn). The causes and molecular mechanisms of PD are not clearly understood to date. However, misfolded proteins, oxidative stress, and impaired autophagy are believed to play important roles in the pathogenesis of PD. Importantly, α-syn is considered a key player in the development of PD. The present study aimed to assess the role of Ellagic acid (EA), a polyphenol found in many fruits, on α-syn aggregation and toxicity. Using thioflavin and seeding polymerization assays, in addition to electron microscopy, we found that EA could dramatically reduce α-syn aggregation. Moreover, EA significantly mitigated the aggregated α-syn-induced toxicity in SH-SY5Y cells and thus enhanced their viability. Mechanistically, these cytoprotective effects of EA are mediated by the suppression of apoptotic proteins BAX and p53 and a concomitant increase in the anti-apoptotic protein, BCL-2. Interestingly, EA was able to activate autophagy in SH-SY5Y cells, as evidenced by normalized/enhanced expression of LC3-II, p62, and pAKT. Together, our findings suggest that EA may attenuate α-syn toxicity by preventing aggregation and improving viability by restoring autophagy and suppressing apoptosis.  相似文献   

3.
α-synuclein (α-syn) is a protein associated with the pathogenesis of Parkinson’s disease (PD), the second most common neurodegeneration disease with no effective treatment. However, how α-syn drives the pathology of PD remains elusive. Recent studies suggest that α-syn oligomers are the primary cause of neurotoxicity and play a critical role in PD. In this review, we discuss the process of α-syn oligomers formation and the current understanding of the structures of oligomers. We also describe seed and propagation effects of oligomeric forms of α-syn. Then, we summarize the mechanism by which α-syn oligomers exert neurotoxicity and promote neurodegeneration, including mitochondrial dysfunction, endoplasmic reticulum stress, proteostasis dysregulation, synaptic impairment, cell apoptosis and neuroinflammation. Finally, we investigate treatment regimens targeting α-syn oligomers at present. Further research is needed to understand the structure and toxicity mechanism of different types of oligomers, so as to provide theoretical basis for the treatment of PD.  相似文献   

4.
5.
Parkinson’s disease (PD) is characterized by a loss of dopaminergic cells in the substantia nigra, and its histopathological features include the presence of fibrillar aggregates of α-synuclein (α-syn), which are called Lewy bodies and Lewy neurites. Lewy pathology has been identified not only in the brain but also in various tissues, including muscles. This study aimed to investigate the link between serine/arginine-rich protein specific kinase 3 (srpk3) and α-syn in muscles in PD. We conducted experiments on the quadriceps femoris of a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and the C2C12 cell line after treatment with 1-methyl-4-phenylpyridinium (MPP+) and srpk3 short interfering RNA (siRNA). Compared to the control group, the MPTP group showed significantly reduced expression of srpk3, but increased expression of α-syn. In MPP+-treated C2C12 cells, srpk3 expression gradually decreased and α-syn expression increased with the increasing MPP+ concentration. Moreover, experiments in C2C12 cells using srpk3 siRNA showed increased expressions of α-syn and phosphorylated α-syn. Our results showed that srpk3 expression could be altered by MPTP intoxication in muscles, and this change may be related to changes in α-syn expression. Furthermore, this study could contribute to advancement of research on the mechanism by which srpk3 plays a role in PD.  相似文献   

6.
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.  相似文献   

7.
Parkinson’s disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells.  相似文献   

8.
We investigated the potential association between integrin α7 (ITGA7) and alpha-synuclein (α-syn) in a methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease (PD) mouse model. Tyrosine hydroxylase (TH), ITGA7, and α-syn expression in the substantia nigra (SN) of the brain were observed to examine the pathological characteristics of PD. To determine the relationship between ITGA7 and PD, the expression of TH and α-syn was investigated after ITGA7 siRNA knockdown in SH-SY5Y cells. The ITGA7 microarray signal was decreased in the SN of the MPTP group, indicating reduced ITGA7 expression compared to that in the control. The expression patterns of ITGA7 in the control group and those of α-syn in the MPTP group were similar on immunohistochemical staining. Reduction in ITGA7 expression by ITGA7 siRNA administration induced a decrease in TH expression and an increase in α-syn expression in SH-SY5Y cells. The decreased expression of ITGA7 significantly decreased the expression of bcl2 and increased the bax/bcl2 ratio in SH-SY5Y cells. These results suggest that reduced ITGA7 expression may be related to increased α-syn expression and apoptosis of dopaminergic cells in an MPTP-induced PD mouse model. To the best of our knowledge, this is the first study to show an association between ITGA7 and PD.  相似文献   

9.
Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson’s disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal–lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.  相似文献   

10.
The neuropathological substrate of dementia with Lewy bodies (DLB) is defined by the inextricable cross-seeding accretion of amyloid-β (Aβ) and α-synuclein (α-syn)-laden deposits in cholinergic neurons. The recent revelation that neuropeptide kisspeptin-10 (KP-10) is able to mitigate Aβ toxicity via an extracellular binding mechanism may provide a new horizon for innovative drug design endeavors. Considering the sequence similarities between α-syn’s non-amyloid-β component (NAC) and Aβ’s C-terminus, we hypothesized that KP-10 would enhance cholinergic neuronal resistance against α-syn’s deleterious consequences through preferential binding. Here, human cholinergic SH-SY5Y cells were transiently transformed to upsurge the mRNA expression of α-syn while α-syn-mediated cholinergic toxicity was quantified utilizing a standardized viability-based assay. Remarkably, the E46K mutant α-syn displayed elevated α-syn mRNA levels, which subsequently induced more cellular toxicity compared with the wild-type α-syn in choline acetyltransferase (ChAT)-positive cholinergic neurons. Treatment with a high concentration of KP-10 (10 µM) further decreased cholinergic cell viability, while low concentrations of KP-10 (0.01–1 µM) substantially suppressed wild-type and E46K mutant α-syn-mediated toxicity. Correlating with the in vitro observations are approximations from in silico algorithms, which inferred that KP-10 binds favorably to the C-terminal residues of wild-type and E46K mutant α-syn with CDOCKER energy scores of −118.049 kcal/mol and −114.869 kcal/mol, respectively. Over the course of 50 ns simulation time, explicit-solvent molecular dynamics conjointly revealed that the docked complexes were relatively stable despite small-scale fluctuations upon assembly. Taken together, our findings insinuate that KP-10 may serve as a novel therapeutic scaffold with far-reaching implications for the conceptualization of α-syn-based treatments.  相似文献   

11.
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. An important hallmark of PD involves the pathological aggregation of proteins in structures known as Lewy bodies. The major component of these proteinaceous inclusions is alpha (α)-synuclein. In different conditions, α-synuclein can assume conformations rich in either α-helix or β-sheets. The mechanisms of α-synuclein misfolding, aggregation, and fibrillation remain unknown, but it is thought that β-sheet conformation of α-synuclein is responsible for its associated toxic mechanisms. To gain fundamental insights into the process of α-synuclein misfolding and aggregation, the secondary structure of this protein in the presence of charged and non-charged surfactant solutions was characterized. The selected surfactants were (anionic) sodium dodecyl sulphate (SDS), (cationic) cetyltrimethylammonium chloride (CTAC), and (uncharged) octyl β-D-glucopyranoside (OG). The effect of surfactants in α-synuclein misfolding was assessed by ultra-structural analyses, in vitro aggregation assays, and secondary structure analyses. The α-synuclein aggregation in the presence of negatively charged SDS suggests that SDS-monomer complexes stimulate the aggregation process. A reduction in the electrostatic repulsion between N- and C-terminal and in the hydrophobic interactions between the NAC (non-amyloid beta component) region and the C-terminal seems to be important to undergo aggregation. Fourier transform infrared spectroscopy (FTIR) measurements show that β-sheet structures comprise the assembly of the fibrils.  相似文献   

12.
The dimeric structure of the N-terminal 12 residues drives the interaction of α-synuclein protein with membranes. Moreover, experimental studies indicated that the aggregation of α-synuclein is faster at low pH than neutral pH. Nevertheless, the effects of different pH on the structural characteristics of the α-syn12 dimer remain poorly understood. We performed 500 ns temperature replica exchange molecular dynamics (T-REMD) simulations of two α-syn12 peptides in explicit solvent. The free energy surfaces contain ten highly populated regions at physiological pH, while there are only three highly populated regions contained at acidic pH. The anti-parallel β-sheet conformations were found as the lowest free energy state. Additionally, these states are nearly flat with a very small barrier which indicates that these states can easily transit between themselves. The dimer undergoes a disorder to order transition from physiological pH to acidic pH and the α-syn12 dimer at acidic pH involves a faster dimerization process. Further, the Lys6–Asp2 contact may prevent the dimerization.  相似文献   

13.
The aggregation of alpha-synuclein (α-SYN) into fibrils is characteristic for several neurodegenerative diseases, including Parkinson’s disease (PD). Ninety percent of α-SYN deposited in Lewy Bodies, a pathological hallmark of PD, is phosphorylated on serine129. α-SYN can also be phosphorylated on tyrosine125, which is believed to regulate the membrane binding capacity and thus possibly its normal function. A better understanding of the effect of phosphorylation on the aggregation of α-SYN might shed light on its role in the pathogenesis of PD. In this study we compare the aggregation properties of WT α-SYN with the phospho-dead and phospho-mimic mutants S129A, S129D, Y125F and Y125E and in vitro phosphorylated α-SYN using turbidity, thioflavin T and circular dichroism measurements as well as transmission electron microscopy. We show that the mutants S129A and S129D behave similarly compared to wild type (WT) α-SYN, while the mutants Y125F and Y125E fibrillate significantly slower, although all mutants form fibrillar structures similar to the WT protein. In contrast, in vitro phosphorylation of α-SYN on either S129 or Y125 does not significantly affect the fibrillization kinetics. Moreover, FK506 binding proteins (FKBPs), enzymes with peptidyl-prolyl cis-trans isomerase activity, still accelerate the aggregation of phosphorylated α-SYN in vitro, as was shown previously for WT α-SYN. In conclusion, our results illustrate that phosphorylation mutants can display different aggregation properties compared to the more biologically relevant phosphorylated form of α-SYN.  相似文献   

14.
The mechanism of nigral dopaminergic neuronal degeneration in Parkinson’s disease (PD) is unknown. One of the pathological characteristics of the disease is the deposition of α-synuclein (α-syn) that occurs in the brain from both familial and sporadic PD patients. This paper constitutes a narrative review that takes advantage of information related to genes (SNCA, LRRK2, GBA, UCHL1, VPS35, PRKN, PINK1, ATP13A2, PLA2G6, DNAJC6, SYNJ1, DJ-1/PARK7 and FBXO7) involved in familial cases of Parkinson’s disease (PD) to explore their usefulness in deciphering the origin of dopaminergic denervation in many types of PD. Direct or functional interactions between genes or gene products are evaluated using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The rationale is to propose a map of the interactions between SNCA, the gene encoding for α-syn that aggregates in PD, and other genes, the mutations of which lead to early-onset PD. The map contrasts with the findings obtained using animal models that are the knockout of one of those genes or that express the mutated human gene. From combining in silico data from STRING-based assays with in vitro and in vivo data in transgenic animals, two likely mechanisms appeared: (i) the processing of native α-syn is altered due to the mutation of genes involved in vesicular trafficking and protein processing, or (ii) α-syn mutants alter the mechanisms necessary for the correct vesicular trafficking and protein processing. Mitochondria are a common denominator since both mechanisms require extra energy production, and the energy for the survival of neurons is obtained mainly from the complete oxidation of glucose. Dopamine itself can result in an additional burden to the mitochondria of dopaminergic neurons because its handling produces free radicals. Drugs acting on G protein-coupled receptors (GPCRs) in the mitochondria of neurons may hopefully end up targeting those receptors to reduce oxidative burden and increase mitochondrial performance. In summary, the analysis of the data of genes related to familial PD provides relevant information on the etiology of sporadic cases and might suggest new therapeutic approaches.  相似文献   

15.
Parkinson''s disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN), reducing dopaminergic levels in the striatum and affecting motor control. Herein, we investigated the potential relationship between integrin α7 (ITGA7) and α-synuclein (α-syn) in the muscle of methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP)-induced mice and C2C12 cells. To characterize the pathology of PD, we examined the expression of tyrosine hydroxylase (TH) in the SN of the midbrain. Compared with the control group, MPTP-treated mice showed a significant decrease in TH expression in the SN, accompanied by a significant decrease in muscle ITGA7 expression. Compared with the control group, α-syn expression was increased in the MPTP group. Furthermore, the pattern of α-syn expression in the MPTP group was similar to the ITGA7 expression pattern in the control group (linear forms). To determine the relationship between ITGA7 and PD, we examined the expression of ITGA7 and α-syn after ITGA7 knockdown using siRNA in C2C12 cells. ITGA7 expression significantly decreased while α-syn expression significantly increased in siRNA-treated C2C12 cells. These results suggest that decreased ITGA7 muscle expression could increase α-syn expression. Moreover, α-syn accumulation, induced by decreased muscle ITGA7, might contribute to PD pathology.  相似文献   

16.
Parkinson’s disease (PD) is a progressive neurodegenerative motor disorder without an available therapeutic to halt the formation of Lewy bodies for preventing dopaminergic neuronal loss in the nigrostriatal pathway. Since oxidative-stress-mediated damage has been commonly reported as one of the main pathological mechanisms in PD, we assessed the efficacy of a novel NOX inhibitor from AptaBio Therapeutics (C-6) in dopaminergic cells and PD mouse models. The compound reduced the cytotoxicity and enhanced the cell viability at various concentrations against MPP+ and α-synuclein preformed fibrils (PFFs). Further, the levels of ROS and protein aggregation were significantly reduced at the optimal concentration (1 µM). Using two different mouse models, we gavaged C-6 at two different doses to the PD sign-displaying transgenic mice for 2 weeks and stereotaxically PFF-injected mice for 5 weeks. Our results demonstrated that both C-6-treated mouse models showed alleviated motor deficits in pole test, hindlimb clasping, crossbeam, rotarod, grooming, and nesting analyses. We also confirmed that the compound treatment reduced the levels of protein aggregation, along with phosphorylated-α-synuclein, in the striatum and ventral midbrain and further dopaminergic neuronal loss. Taken together, our results strongly suggest that NOX inhibition can be a potential therapeutic target for PD.  相似文献   

17.
Rotenone (ROT) inhibits mitochondrial complex I, leading to reactive oxygen species formation, which causes neurodegeneration and alpha-synuclein (α-syn) aggregation and, consequently, Parkinson’s disease. We previously found that a neurogenic differentiated human adipose tissue-derived stem cell-conditioned medium (NI-hADSC-CM) was protective against ROT-induced toxicity in SH-SY5Y cells. In the present study, ROT significantly decreased the phospho (p)-mTORC1/total (t)-mTOR, p-mTORC2/t-mTOR, and p-/t-ULK1 ratios and the ATG13 level by increasing the DEPTOR level and p-/t-AMPK ratio. Moreover, ROT increased the p-/t-Akt ratio and glycogen synthase kinase-3β (GSK3β) activity by decreasing the p-/t-ERK1/2 ratios and beclin-1 level. ROT also promoted the lipidation of LC3B-I to LC3B-II by inducing autophagosome formation in Triton X-100-soluble and -insoluble cell lysate fractions. Additionally, the levels of ATG3, 5, 7, and 12 were decreased, along with those of lysosomal LAMP1, LAMP2, and TFEB, leading to lysosomal dysfunction. However, NI-hADSC-CM treatment increased the p-mTORC1, p-mTORC2, p-ULK1, p-Akt, p-ERK1/2, ATG13, and beclin-1 levels and decreased the p-AMPK level and GSK3β activity in response to ROT-induced toxicity. Additionally, NI-hADSC-CM restored the LC3B-I level, increased the p62 level, and normalized the ATG and lysosomal protein amounts to control levels. Autophagy array revealed that the secreted proteins in NI-hADSC-CM could be crucial in the neuroprotection. Taken together, our results showed that the neuroprotective effects of NI-hADSC-CM on the autophagy signaling pathways could alleviate the aggregation of α-syn in Parkinson’s disease and other neurodegenerative disorders.  相似文献   

18.
Growing cases of patients reported have shown a potential relationship between (severe acute respiratory syndrome coronavirus 2) SARS-CoV-2 infection and Parkinson’s disease (PD). However, it is unclear whether there is a molecular link between these two diseases. Alpha-synuclein (α-Syn), an aggregation-prone protein, is considered a crucial factor in PD pathology. In this study, bioinformatics analysis confirmed favorable binding affinity between α-Syn and SARS-CoV-2 spike (S) protein and nucleocapsid (N) protein, and direct interactions were further verified in HEK293 cells. The expression of α-Syn was upregulated and its aggregation was accelerated by S protein and N protein. It was noticed that SARS-CoV-2 proteins caused Lewy-like pathology in the presence of α-Syn overexpression. By confirming that SARS-CoV-2 proteins directly interact with α-Syn, our study offered new insights into the mechanism underlying the development of PD on the background of COVID-19.  相似文献   

19.
α-Synuclein (αSyn) plays a major role in the pathogenesis of Parkinson’s disease (PD), which is the second most common neurodegenerative disease after Alzheimer’s disease. The accumulation of αSyn is a pathological hallmark of PD, and mutations in the SNCA gene encoding αSyn cause familial forms of PD. Moreover, the ectopic expression of αSyn has been demonstrated to mimic several key aspects of PD in experimental model systems. Among the various model systems, Drosophila melanogaster has several advantages for modeling human neurodegenerative diseases. Drosophila has a well-defined nervous system, and numerous tools have been established for its genetic analyses. The rapid generation cycle and short lifespan of Drosophila renders them suitable for high-throughput analyses. PD model flies expressing αSyn have contributed to our understanding of the roles of various disease-associated factors, including genetic and nongenetic factors, in the pathogenesis of PD. In this review, we summarize the molecular pathomechanisms revealed to date using αSyn-expressing Drosophila models of PD, and discuss the possibilities of using these models to demonstrate the biological significance of disease-associated factors.  相似文献   

20.
The interplay between α-synuclein and dopamine derivatives is associated with oxidative stress-dependent neurodegeneration in Parkinson’s disease (PD). The formation in the dopaminergic neurons of intraneuronal inclusions containing aggregates of α-synuclein is a typical hallmark of PD. Even though the biochemical events underlying the aberrant aggregation of α-synuclein are not completely understood, strong evidence correlates this process with the levels of dopamine metabolites. In vitro, 3,4-dihydroxyphenylacetaldehyde (DOPAL) and the other two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylethanol (DOPET), share the property to inhibit the growth of mature amyloid fibrils of α-synuclein. Although this effect occurs with the formation of differently toxic products, the molecular basis of this inhibition is still unclear. Here, we provide information on the effect of DOPAC on the aggregation properties of α-synuclein and its ability to interact with membranes. DOPAC inhibits α-synuclein aggregation, stabilizing monomer and inducing the formation of dimers and trimers. DOPAC-induced oligomers did not undergo conformational transition in the presence of membranes, and penetrated the cell, where they triggered autophagic processes. Cellular assays showed that DOPAC reduced cytotoxicity and ROS production induced by α-synuclein aggregates. Our findings show that the early radicals resulting from DOPAC autoxidation produced covalent modifications of the protein, which were not by themselves a primary cause of either fibrillation or membrane binding inhibition. These findings are discussed in the light of the potential mechanism of DOPAC protection against the toxicity of α-synuclein aggregates to better understand protein and catecholamine biology and to eventually suggest a scaffold that can help in the design of candidate molecules able to interfere in α-synuclein aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号