首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Growing cases of patients reported have shown a potential relationship between (severe acute respiratory syndrome coronavirus 2) SARS-CoV-2 infection and Parkinson’s disease (PD). However, it is unclear whether there is a molecular link between these two diseases. Alpha-synuclein (α-Syn), an aggregation-prone protein, is considered a crucial factor in PD pathology. In this study, bioinformatics analysis confirmed favorable binding affinity between α-Syn and SARS-CoV-2 spike (S) protein and nucleocapsid (N) protein, and direct interactions were further verified in HEK293 cells. The expression of α-Syn was upregulated and its aggregation was accelerated by S protein and N protein. It was noticed that SARS-CoV-2 proteins caused Lewy-like pathology in the presence of α-Syn overexpression. By confirming that SARS-CoV-2 proteins directly interact with α-Syn, our study offered new insights into the mechanism underlying the development of PD on the background of COVID-19.  相似文献   

2.
Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are characterized by the aberrant accumulation of intracytoplasmic misfolded and aggregated α-synuclein (α-Syn), resulting in neurodegeneration associated with inflammation. The propagation of α-Syn aggregates from cell to cell is implicated in the spreading of pathological α-Syn in the brain and disease progression. We and others demonstrated that antibodies generated after active and passive vaccinations could inhibit the propagation of pathological α-Syn in the extracellular space and prevent/inhibit disease/s in the relevant animal models. We recently tested the immunogenicity and efficacy of four DNA vaccines on the basis of the universal MultiTEP platform technology in the DLB/PD mouse model. The antibodies generated by these vaccines efficiently reduced/inhibited the accumulation of pathological α-Syn in the different brain regions and improved the motor deficit of immunized female mice. The most immunogenic and preclinically effective vaccine, PV-1950D, targeting three B-cell epitopes of pathological α-Syn simultaneously, has been selected for future IND-enabling studies. However, to ensure therapeutically potent concentrations of α-Syn antibodies in the periphery of the vaccinated elderly, we developed a recombinant protein-based MultiTEP vaccine, PV-1950R/A, and tested its immunogenicity in young and aged D-line mice. Antibody responses induced by immunizations with the PV-1950R/A vaccine and its homologous DNA counterpart, PV-1950D, in a mouse model of PD/DLB have been compared.  相似文献   

3.
Lewy bodies are pathological characteristics of Lewy body dementia (LBD) and are composed of α-synuclein (α-Syn), which is mostly degraded via the ubiquitin–proteasome system. More importantly, 26S proteasomal activity decreases in the brain of LBD patients. We recently introduced a T-type calcium channel enhancer SAK3 (ethyl-8-methyl-2,4-dioxo-2-(piperidin-1-yl)- 2H-spiro[cyclopentane-1,3-imidazo [1,2-a]pyridin]-2-ene-3-carboxylate) for Alzheimer’s disease therapeutics. SAK3 enhanced the proteasome activity via CaMKII activation in amyloid precursor protein knock-in mice, promoting the degradation of amyloid-β plaques to improve cognition. At this point, we addressed whether SAK3 promotes the degradation of misfolded α-Syn and the aggregates in α-Syn preformed fibril (PFF)-injected mice. The mice were injected with α-Syn PFF in the dorsal striatum, and SAK3 (0.5 or 1.0 mg/kg) was administered orally for three months, either immediately or during the last month after injection. SAK3 significantly inhibited the accumulation of fibrilized phosphorylated-α-Syn in the substantia nigra. Accordingly, SAK3 significantly recovered mesencephalic dopamine neurons from cell death. Decreased α-Syn accumulation was closely associated with increased proteasome activity. Elevated CaMKII/Rpt-6 signaling possibly mediates the enhanced proteasome activity after SAK3 administration in the cortex and hippocampus. CaMKII/Rpt-6 activation also accounted for improved memory and cognition in α-Syn PFF-injected mice. These findings indicate that CaMKII/Rpt-6-dependent proteasomal activation by SAK3 recovers from α-Syn pathology in LBD.  相似文献   

4.
α-Synuclein (α-Syn) aggregates are implicated in Parkinson’s disease (PD), so inhibitors of α-Syn aggregation have been intensively explored. It has been demonstrated that small molecules might be able to reduce α-Syn aggregation in fibrils, thus exerting neuroprotective effects in models of PD. To expand our knowledge about the structural requirements for blocking the recognition process into the oligomeric assembly of α-Syn aggregates, we performed a ligand-based virtual screening procedure using two well-known α-Syn aggregation inhibitors, SynuClean-D and ZPD-2, as query compounds. A collection of thirty-four compounds bearing distinct chemical functionalities and mutual chemical features were studied in a Th-T fluorescence test, thus identifying 5-(2,6-dinitro-4-(trifluoromethyl)benzyl)-1-methyl-1H-tetrazole (named MeSC-04) as a potent α-Syn amyloid formation inhibitor that demonstrated similar behavior when compared to SynuClean-D in the thioflavin-T-monitored kinetic assays, with both molecules reducing the number and size of amyloid fibrils, as evidenced by electron microscopy. Molecular modeling studies suggested the binding mode of MeSC-04 through the identification of putative druggable pockets on α-syn fibrils and a subsequent consensus docking methodology. Overall, this work could furnish new insights in the development of α-Syn amyloid inhibitors from synthetic sources.  相似文献   

5.
α-Synuclein (α-Syn) protein is involved in the pathogenesis of Parkinson’s disease (PD). Point mutations and multiplications of the α-Syn, which encodes the SNCA gene, are correlated with early-onset PD, therefore the reduction in a-Syn synthesis could be a potential therapy for PD if delivered to the key affected neurons. Several experimental strategies for PD have been developed in recent years using oligonucleotide therapeutics. However, some of them have failed or even caused neuronal toxicity. One limiting step in the success of oligonucleotide-based therapeutics is their delivery to the brain compartment, and once there, to selected neuronal populations. Previously, we developed an indatraline-conjugated antisense oligonucleotide (IND-1233-ASO), that selectively reduces α-Syn synthesis in midbrain monoamine neurons of mice, and nonhuman primates. Here, we extended these observations using a transgenic male mouse strain carrying both A30P and A53T mutant human α-Syn (A30P*A53T*α-Syn). We found that A30P*A53T*α-Syn mice at 4–5 months of age showed 3.5-fold increases in human α-Syn expression in dopamine (DA) and norepinephrine (NE) neurons of the substantia nigra pars compacta (SNc) and locus coeruleus (LC), respectively, compared with mouse α-Syn levels. In parallel, transgenic mice exhibited altered nigrostriatal DA neurotransmission, motor alterations, and an anxiety-like phenotype. Intracerebroventricular IND-1233-ASO administration (100 µg/day, 28 days) prevented the α-Syn synthesis and accumulation in the SNc and LC, and recovered DA neurotransmission, although it did not reverse the behavioral phenotype. Therefore, the present therapeutic strategy based on a conjugated ASO could be used for the selective inhibition of α-Syn expression in PD-vulnerable monoamine neurons, showing the benefit of the optimization of ASO molecules as a disease modifying therapy for PD and related α-synucleinopathies.  相似文献   

6.
Recently, the synaptic proteins neurogranin (Ng) and α-synuclein (α-Syn) have attracted scientific interest as potential biomarkers for synaptic dysfunction in neurodegenerative diseases. In this study, we measured the CSF Ng and α-Syn concentrations in patients affected by AD (n = 69), non-AD neurodegenerative disorders (n-AD = 50) and non-degenerative disorders (n-ND, n = 98). The concentrations of CSF Ng and α-Syn were significantly higher in AD than in n-AD and n-ND. Moreover, the Aβ42/Ng and Aβ42/α-Syn ratios showed statistically significant differences between groups and discriminated AD patients from n-AD patients, better than Ng or α-Syn alone. Regression analyses showed an association of higher Ng concentrations with MMSE < 24, pathological Aβ 42/40 ratios, pTau, tTau and the ApoEε4 genotype. Aβ 42/Ng was associated with MMSE < 24, an AD-related FDG-PET pattern, the ApoEε4 genotype, pathological Aβ 42 levels and Aβ 42/40 ratios, pTau, and tTau. Moreover, APO-Eε4 carriers showed higher Ng concentrations than non-carriers. Our results support the idea that the Aβ 42/Ng ratio is a reliable index of synaptic dysfunction/degeneration able to discriminate AD from other neurological conditions.  相似文献   

7.
8.
Parkinson’s disease (PD) is characterized by cell loss in the substantia nigra and the presence of alpha-synuclein (α-syn)-containing neuronal Lewy bodies. While α-syn has received major interest in the pathogenesis of PD, the function of beta- and gamma-synucleins (β-syn and γ-syn, respectively) is not really known. Yet, these proteins are members of the same family and also concentrated in neuronal terminals. The current preclinical study investigated the expression levels of α-, β-, and γ-synucleins in brainstem regions involved in PD physiopathology. We analyzed synuclein expression in the substantia nigra, raphe nuclei, pedunculopontine nucleus, and locus coeruleus from control and parkinsonian (by MPTP) macaques. MPTP-intoxicated monkeys developed a more or less severe parkinsonian score and were sacrificed after a variable post-MPTP period ranging from 1 to 20 months. The expression of the three synucleins was increased in the substantia nigra after MPTP, and this increase correlates positively, although not very strongly, with cell loss and motor score and not with the time elapsed after intoxication. In the dorsal raphe nucleus, the expression of the three synucleins was also increased, but only α- and γ-Syn are linked to the motor score and associated cell loss. Finally, although no change in synuclein expression was demonstrated in the locus coeruleus after MPTP, we found increased expression levels of γ-Syn, which are only correlated with cell loss in the pedunculopontine nucleus. Altogether, our data suggest that these proteins may play a key role in brainstem regions and mesencephalic tegmentum. Given the involvement of these brain regions in non-motor symptoms of PD, these data also strengthen the relevance of the MPTP macaque model of PD, which exhibits pathological changes beyond nigral DA cell loss and α-synucleinopathy.  相似文献   

9.
10.
Self-aggregation of Curcumin (Cur) in aqueous biological environment decreases its bioavailability and in vivo therapeutic efficacy, which hampers its clinical use as candidate for reducing risk of neurodegenerative diseases. Here, we focused on the design of new Cur- β-Cyclodextrin nanoconjugates to improve the solubility and reduce cell toxicity of Cur. In this study, we described the synthesis, structural characterization, photophysical properties and neuron cell toxicity of two new water soluble β-CD/Cur nanoconjugates as new strategy for reducing risks of neurodegenerative diseases. Cur was coupled to one or two β-CD molecules via triazole rings using CuAAC click chemistry strategy to yield β-CD@Cur and (β-CD)2@Cur nanoconjugates, respectively. The synthesized nanoconjugates were found to be able to self-assemble in aqueous condition and form nano-aggregates of an average diameter size of around 35 and 120 nm for β-CD@Cur and (β-CD)2@Cur, respectively. The photophysical properties, water solubility and cell toxicity on rat embryonic cortical neurons of the designed nanoconjugates were investigated and compared to that of Cur alone. The findings revealed that both new nanoconjugates displayed better water solubility and in vitro biocompatibility than Cur alone, thus making it possible to envisage their use as future nano-systems for the prevention or risk reduction of neurodegenerative diseases.  相似文献   

11.
Alzheimer’s disease (AD) is the major cause of dementia, and affected individuals suffer from severe cognitive, mental, and functional impairment. Histologically, AD brains are basically characterized by the presence of amyloid plaques and neurofibrillary tangles. Previous reports demonstrated that protein kinase CK1δ influences the metabolism of amyloid precursor protein (APP) by inducing the generation of amyloid-β (Aβ), finally contributing to the formation of amyloid plaques and neuronal cell death. We therefore considered CK1δ as a promising therapeutic target and suggested an innovative strategy for the treatment of AD based on peptide therapeutics specifically modulating the interaction between CK1δ and APP. Initially, CK1δ-derived peptides manipulating the interactions between CK1δ and APP695 were identified by interaction and phosphorylation analysis in vitro. Selected peptides subsequently proved their potential to penetrate cells without inducing cytotoxic effects. Finally, for at least two of the tested CK1δ-derived peptides, a reduction in Aβ levels and amyloid plaque formation could be successfully demonstrated in a complex cell culture model for AD. Consequently, the presented results provide new insights into the interactions of CK1δ and APP695 while also serving as a promising starting point for further development of novel and highly innovative pharmacological tools for the treatment of AD.  相似文献   

12.
Pathological protein inclusion formation and propagation are the main causes of neuronal dysfunction in diverse neurodegenerative diseases; therefore, current disease-modifying therapeutic strategies have targeted this disease protein aggregation process. Recently, we reported that peucedanocoumarin III (PCiii) is a promising therapeutic compound with the ability to disaggregate α-synuclein inclusion and protect dopaminergic neurons in Parkinson’s disease (PD). Here, we found that trans-4′-acetyl-3′-tigloylkhellactone (racemic peucedanocoumarin IV [PCiv]), a structural isomer of PCiii with a higher synthetic yield presented a strong anti-aggregate activity to a degree comparable to that of PCiii. PCiv retained effective inhibitory function against β-sheet aggregate-mimic β23 cytotoxicities and potently prevented α-synucleinopathy in α-synuclein preformed fibril (PFF)-treated mice cortical neurons. In detailed pharmacokinetic profiling of PCiv, oral administration of PCiv in rats exhibited an approximately 97-min half-life and 10% bioavailability. Moreover, tissue distribution analysis revealed favorable profiles of brain penetration with a 6.4 brain-to-plasma concentration ratio. The therapeutic efficacy of PCiv was further evaluated in a sporadic PD mouse model with a combinatorial co-injection of α-synuclein preformed fibril and recombinant adeno-associated virus expressing α-synuclein. Motor dysfunctions induced in this combinatorial α-synucleinopathy PD mouse model was almost completely rescued by PCiv diet administration, and this therapeutic effect is consistent with the marked prevention of dopaminergic neuron loss and suppression of α-synuclein aggregation. Taken together, our translational study suggests that PCiv is advantageous as a therapeutic agent for neurodegenerative diseases, especially with its good synthetic yield, high brain distribution, and anti-aggregate activity. PCiv may be useful in the management of α-synuclein inclusion formation and propagation at different stages of PD.  相似文献   

13.
Integrins are necessary for cell adhesion, migration, and positioning. Essential for inducing signalling events for cell survival, proliferation, and differentiation, they also trigger a variety of signal transduction pathways involved in mediating invasion, metastasis, and squamous-cell carcinoma. Several recent studies have demonstrated that the up- and down-regulation of the expression of αv and other integrins can be a potent marker of malignant diseases and patient prognosis. This review focuses on an arginine-glycine-aspartic acid (RGD)-dependent integrin αVβ6, its biology, and its role in healthy humans. We examine the implications of αVβ6 in cancer progression and the promotion of epithelial-mesenchymal transition (EMT) by contributing to the activation of transforming growth factor beta TGF-β. Although αvβ6 is crucial for proper function in healthy people, it has also been validated as a target for cancer treatment. This review briefly considers aspects of targeting αVβ6 in the clinic via different therapeutic modalities.  相似文献   

14.
15.
Increasing studies suggest that inflammatory processes in the central nervous system mediated by microglial activation plays an important role in numerous neurodegenerative diseases. Development of planning for microglial suppression is considered a key strategy in the search for neuroprotection. Paeonol is a major phenolic component of Moutan Cortex, widely used as a nutrient supplement in Chinese medicine. In this study, we investigated the effects of paeonol on microglial cells stimulated by inflammagens. Paeonol significantly inhibited the release of nitric oxide (NO) and the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Treatment with paeonol also reduced reactive oxygen species (ROS) production and inhibited an ATP-induced increased cell migratory activity. Furthermore, the inhibitory effects of neuroinflammation by paeonol were found to be regulated by phosphorylated adenosine monophosphate-activated protein kinase-α (AMPK-α) and glycogen synthase kinase 3 α/β (GSK 3α/β). Treatment with AMPK or GSK3 inhibitors reverse the inhibitory effect of neuroinflammation by paeonol in microglial cells. Furthermore, paeonol treatment also showed significant improvement in the rotarod performance and microglial activation in the mouse model as well. The present study is the first to report a novel inhibitory role of paeonol on neuroinflammation, and presents a new candidate agent for the development of therapies for inflammation-related neurodegenerative diseases.  相似文献   

16.
The idiopathic inflammatory myopathies (IIM) constitute a heterogeneous group of chronic disorders that include dermatomyositis (DM), polymyositis (PM), sporadic inclusion body myositis (IBM) and necrotizing autoimmune myopathy (NAM). They represent distinct pathological entities that, most often, share predominant inflammation in muscle tissue. Many of the immunopathogenic processes behind the IIM remain poorly understood, but the crucial role of cytokines as essential regulators of the intramuscular build-up of inflammation is undisputed. This review describes the extensive cytokine network within IIM muscle, characterized by strong expression of Tumor Necrosis Factors (TNFα, LTβ, BAFF), Interferons (IFNα/β/γ), Interleukins (IL-1/6/12/15/18/23) and Chemokines (CXCL9/10/11/13, CCL2/3/4/8/19/21). Current therapeutic strategies and the exploration of potential disease modifying agents based on manipulation of the cytokine network are provided. Reported responses to anti-TNFα treatment in IIM are conflicting and new onset DM/PM has been described after administration of anti-TNFα agents to treat other diseases, pointing to the complex effects of TNFα neutralization. Treatment with anti-IFNα has been shown to suppress the IFN type 1 gene signature in DM/PM patients and improve muscle strength. Beneficial effects of anti-IL-1 and anti-IL-6 therapy have also been reported. Cytokine profiling in IIM aids the development of therapeutic strategies and provides approaches to subtype patients for treatment outcome prediction.  相似文献   

17.
Tumor necrosis factor alpha (TNF-α) was initially recognized as a factor that causes the necrosis of tumors, but it has been recently identified to have additional important functions as a pathological component of autoimmune diseases. TNF-α binds to two different receptors, which initiate signal transduction pathways. These pathways lead to various cellular responses, including cell survival, differentiation, and proliferation. However, the inappropriate or excessive activation of TNF-α signaling is associated with chronic inflammation and can eventually lead to the development of pathological complications such as autoimmune diseases. Understanding of the TNF-α signaling mechanism has been expanded and applied for the treatment of immune diseases, which has resulted in the development of effective therapeutic tools, including TNF-α inhibitors. Currently, clinically approved TNF-α inhibitors have shown noticeable potency in a variety of autoimmune diseases, and novel TNF-α signaling inhibitors are being clinically evaluated. In this review, we briefly introduce the impact of TNF-α signaling on autoimmune diseases and its inhibitors, which are used as therapeutic agents against autoimmune diseases.  相似文献   

18.
19.
The blood-brain barrier (BBB) is a selective barrier and a functional gatekeeper for the central nervous system (CNS), essential for maintaining brain homeostasis. The BBB is composed of specialized brain endothelial cells (BECs) lining the brain capillaries. The tight junctions formed by BECs regulate paracellular transport, whereas transcellular transport is regulated by specialized transporters, pumps and receptors. Cytokine-induced neuroinflammation, such as the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), appear to play a role in BBB dysfunction and contribute to the progression of Alzheimer’s disease (AD) by contributing to amyloid-β (Aβ) peptide accumulation. Here, we investigated whether TNF-α and IL-1β modulate the permeability of the BBB and alter Aβ peptide transport across BECs. We used a human BBB in vitro model based on the use of brain-like endothelial cells (BLECs) obtained from endothelial cells derived from CD34+ stem cells cocultivated with brain pericytes. We demonstrated that TNF-α and IL-1β differentially induced changes in BLECs’ permeability by inducing alterations in the organization of junctional complexes as well as in transcelluar trafficking. Further, TNF-α and IL-1β act directly on BLECs by decreasing LRP1 and BCRP protein expression as well as the specific efflux of Aβ peptide. These results provide mechanisms by which CNS inflammation might modulate BBB permeability and promote Aβ peptide accumulation. A future therapeutic intervention targeting vascular inflammation at the BBB may have the therapeutic potential to slow down the progression of AD.  相似文献   

20.
Humic acid (HA) is a possible etiological factor associated with for several vascular diseases. It is known that vascular risk factors can directly increase the susceptibility to Alzheimer’s disease (AD), which is a neurodegenerative disorder due to accumulation of amyloid β (Aβ) peptide in the brain. However, the role that HA contributes to Aβ-induced cytotoxicity has not been demonstrated. In the present study, we demonstrate that HA exhibits a synergistic effect enhancing Aβ-induced cytotoxicity in cultured human SK-N-MC neuronal cells. Furthermore, this deterioration was mediated through the activation of endoplasmic reticulum (ER) stress by stimulating PERK and eIF2α phosphorylation. We also observed HA and Aβ-induced cytotoxicity is associated with mitochondrial dysfunction caused by down-regulation of the Sirt1/PGC1α pathway, while in contrast, treating the cells with the ER stress inhibitor Salubrinal, or over-expression of Sirt1 significantly reduced loss of cell viability by HA and Aβ. Our findings suggest a new mechanism by which HA can deteriorate Aβ-induced cytotoxicity through modulation of ER stress, which may provide significant insights into the pathogenesis of AD co-occurring with vascular injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号