首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Acute lung injury (ALI) and its severe manifestation of acute respiratory distress syndrome (ARDS) are well-known illnesses. Uncontrolled and self-amplified pulmonary inflammation lies at the center of the pathology of this disease. Emodin, the bio-active coxund of herb Radix rhizoma Rhei, shows potent anti-inflammatory properties through inactivation of nuclear factor-κB (NF-κB). The aim of this study was to evaluate the effect of emodin on lipopolysaccharide (LPS)-induced ALI in mice, and its potential bio-mechanism. In our study, BALB/c mice were stimulated with LPS to induce ALI. After 72 h of LPS stimulation, pulmonary pathological changes, lung injury scores, pulmonary edema, myeloperoxidase (MPO) activity, total cells, neutrophils, macrophages, TNF-α, IL-6 and IL-1β in bronchoalveolar lavage fluid (BALF), and MCP-1 and E-selectin expression were notably attenuated by emodin in mice. Meanwhile, our data also revealed that emodin significantly inhibited the LPS-enhanced the phosphorylation of NF-κB p65 and NF-κB p65 DNA binding activity in lung. Our data indicates that emodin potently inhibits LPS-induced pulmonary inflammation, pulmonary edema and MCP-1 and E-selectin expression, and that these effects were very likely mediated by inactivation of NF-κB in mice. These results suggest a therapeutic potential of emodin as an anti-inflammatory agent for ALI/ARDS treatment.  相似文献   

2.
Senescent cells secrete pro-inflammatory factors, and a hallmark feature of senescence is senescence-associated secretory phenotype (SASP). The aim of this study is to investigate the protein kinase CK2 (CK2) effects on SASP factors expression in cellular senescence and organism aging. Here CK2 down-regulation induced the expression of SASP factors, including interleukin (IL)-1β, IL-6, and matrix metalloproteinase (MMP) 3, through the activation of nuclear factor-κB (NF-κB) signaling in MCF-7 and HCT116 cells. CK2 down-regulation-mediated SIRT1 inactivation promoted the degradation of inhibitors of NF-κB (IκB) by activating the AKT-IκB kinase (IKK) axis and increased the acetylation of lysine 310 on RelA/p65, an important site for the activity of NF-κB. kin-10 (the ortholog of CK2β) knockdown increased zmp-1, -2, and -3 (the orthologs of MMP) expression in nematodes, but AKT inhibitor triciribine and SIRT activator resveratrol significantly abrogated the increased expression of these genes. Finally, antisense inhibitors of miR-186, miR-216b, miR-337-3p, and miR-760 suppressed CK2α down-regulation, activation of the AKT-IKK-NF-κB axis, RelA/p65 acetylation, and expression of SASP genes in cells treated with lipopolysaccharide. Therefore, this study indicated that CK2 down-regulation induces the expression of SASP factors through NF-κB activation, which is mediated by both activation of the SIRT1-AKT-IKK axis and RelA/p65 acetylation, suggesting that the mixture of the four miRNA inhibitors can be used as anti-inflammatory agents.  相似文献   

3.
We previously showed that Lactiplantibacillus plantarum K8 and its cell wall components have immunoregulatory effects. In this study, we demonstrate that pre-treatment of L. plantarum K8 lysates reduced LPS-induced TNF-α production in THP-1 cells by down-regulating the early signals of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB). The down-regulation of signals may be caused by the induction of negative regulators involved in toll-like receptor (TLR)-mediated signaling. However, co-treatment with high concentrations of L. plantarum K8 lysates and lipopolysaccharide (LPS) activated the late signaling of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and NF-κB pathways and resulted in the induction of absent in melanoma 2 (AIM2) inflammasome-mediated interleukin (IL)-1β secretion. Intraperitoneal injection of L. plantarum K8 lysates in LPS-induced endotoxin shock mice alleviated mortality and reduced serum tumor-necrosis factor (TNF)-α, IL-1β, aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels. In addition, the mRNA levels of TNF-α, IL-1β, and IL-6 decreased in livers from mice injected with L. plantarum K8 followed by LPS. Hematoxylin and eosin (H&E) staining of the liver showed that the cell size was enlarged by LPS injection and slightly reduced by L. plantarum K8 lysate pre-injection followed by LPS injection. Macrophage infiltration of the liver also decreased in response to the combination injection compared with mice injected with only LPS. Taken together, our results show that although L. plantarum K8 lysates differentially regulated the production of LPS-induced inflammatory cytokines in THP-1 cells, the lysates inhibited overall inflammation in mice. Thus, this study suggests that L. plantarum K8 lysates could be developed as a substance that modulates immune homeostasis by regulating inflammation.  相似文献   

4.
We investigated whether isoleucilactucin, an active constituent of Ixeridium dentatum, reduces inflammation caused by coal fly ash (CFA) in alveolar macrophages (MH-S). The anti-inflammatory effects of isoleucilactucin were assessed by measuring the concentration of nitric oxide (NO) and the expression of pro-inflammatory mediators in MH-S cells exposed to CFA-induced inflammation. We found that isoleucilactucin reduced CFA-induced NO generation dose-dependently in MH-S cells. Moreover, isoleucilactucin suppressed CFA-activated proinflammatory mediators, including cyclooxygenase-2 (COX2) and inducible NO synthase (iNOS), and the proinflammatory cytokines such as interleukin-(IL)-1β, IL-6, and tumor necrosis factor (TNF-α). The inhibiting properties of isoleucilactucin on the nuclear translocation of phosphorylated nuclear factor-kappa B (p-NF-κB) were observed. The effects of isoleucilactucin on the NF-κB and mitogen-activated protein kinase (MAPK) pathways were also measured in CFA-stimulated MH-S cells. These results indicate that isoleucilactucin suppressed CFA-stimulated inflammation in MH-S cells by inhibiting the NF-κB and MAPK pathways, which suggest it might exert anti-inflammatory properties in the lung.  相似文献   

5.
6.
It seems quite necessary to obtain effective substances from natural products against inflammatory response (IR) as there are presently clinical problems regarding accompanying side effects and lowered quality of life. This work aimed to investigate the abilities of hyssopuside (HY), a novel phenolic glycoside isolated from Hyssopus cuspidatus (H. cuspidatus), against IR in lipopolysaccharide (LPS)-induced RAW 264.7 cells and mouse peritoneal macrophages. The results indicated that HY could reduce nitric oxide (NO) production and inhibit the production and secretion of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-stimulated macrophages. Moreover, data from the immunofluorescence study showed that HY suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. The Western blot results suggested that HY reversed the LPS-induced degradation of IκB (inhibitor of NF-κB), which is normally required for the activation of NF-κB. Meanwhile, the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) diminished significantly with the presence of HY in response to LPS stimulation. On the other hand, HY had a negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Moreover, an in silico study of HY against four essential proteins/enzymes revealed that COX-2 was the most efficient enzyme for the interaction, and binding of residues Phe179, Asn351, and Ser424 with HY played crucial roles in the observed activity. The structure analysis indicated the typical characterizations with phenylethanoid glycoside contributed to the anti-inflammatory effects of HY. These results indicated that HY manipulated its anti-inflammatory effects mainly through blocking the NF-κB signal transduction pathways. Collectively, we believe that HY could be a potential alternative phenolic agent for alleviating excessive inflammation in many inflammation-associated diseases.  相似文献   

7.
Salivary levels of interleukin-8 (IL-8) are elevated in patients with periodontitis. Caffeic acid phenethyl ester (CAPE) improves the periodontal status in subjects. However, whether CAPE can reduce IL-8 expression is unclear. We collected saliva to determine proinflammatory cytokine levels and used subgingival calculus and surrounding tissues from patients with periodontitis for oral microbiota analysis via 16s ribosomal RNA gene sequencing. THP-1 cells were stimulated with sterile-filtered saliva from patients, and target gene/protein expression was assessed. IL-8 mRNA expression was analyzed in saliva-stimulated THP-1 cells treated with CAPE and the heme oxygenase-1 (HO-1) inhibitor tin-protoporphyrin (SnPP). In 72 symptomatic individuals, IL-8 was correlated with periodontal inflammation (bleeding on probing, r = 0.45; p < 0.001) and disease severity (bleeding on probing, r = 0.45; p < 0.001) but not with the four oral microbiota species tested. Reduced salivary IL-8 secretion was correlated with effective periodontitis treatment (r = 0.37, p = 0.0013). In THP-1 cells, saliva treatment induced high IL-8 expression and IKK2 and nuclear factor-κB (NF-κB) phosphorylation. However, the IKK inhibitor BMS-345541, NF-κB inhibitor BAY 11-7082, and CAPE attenuated saliva-induced IL-8 expression. CAPE induced HO-1 expression and inhibited IKK2, IκBα, and NF-κB phosphorylation. Blocking HO-1 decreased the anti-inflammatory activity of CAPE. The targeted suppression of IL-8 production using CAPE reduces inflammation and periodontitis.  相似文献   

8.
Acne is a common inflammatory disorder of the human skin and a multifactorial disease caused by the sebaceous gland and Propionibacterium acnes (P. acnes). This study aimed to evaluate the anti-inflammatory effect of micro-current stimulation (MC) on peptidoglycan (PGN)-treated raw 264.7 macrophages and P. acnes-induced skin inflammation. To specify the intensity with anti-inflammatory effects, nitric oxide (NO) production was compared according to various levels of MC. As the lowest NO production was shown at an intensity of 50 μA, subsequent experiments used this intensity. The changes of expression of the proteins related to TLR2/NF-κB signaling were examined by immunoblotting. Also, immunofluorescence analysis was performed for observing NF-κB p65 localization. All of the expression levels of proteins regarding TLR2/NF-κB signaling were decreased by the application of MC. Moreover, the application of MC to PGN-treated raw 264.7 cells showed a significant decrease in the amount of nuclear p65-protein. In the case of animal models with P. acnes-induced skin inflammation, various pro-inflammatory cytokines and mediators significantly decreased in MC-applied mice. In particular, the concentration of IL-1β in serum decreased, and the area of acne lesions, decreased from the histological analysis. We suggest for the first time that MC can be a novel treatment for acne.  相似文献   

9.
10.
IL-27, a heterodimeric cytokine composed of the p28 subunit and Epstein–Barr virus-induced gene 3 (EBI3), acts as a potent immunosuppressant and thus limits pathogenic inflammatory responses. IL-27 is upregulated upon Pseudomonas aeruginosa infection in septic mice, increasing susceptibility to the infection and decreasing clearance of the pathogen. However, it remains unclear which P. aeruginosa-derived molecules promote production of IL-27. In this study, we explored the mechanism by which P. aeruginosa DnaK, a heat shock protein 70-like protein, induces EBI3 expression, thereby promoting production of IL-27. Upregulation of EBI3 expression did not lead to an increase in IL-35, which consists of the p35 subunit and EBI3. The IL-27 production in response to DnaK was biologically active, as reflected by stimulation of IL-10 production. DnaK-mediated expression of EBI3 was driven by two distinct signaling pathways, NF-κB and Akt. However, NF-κB is linked to TLR4-associated signaling pathways, whereas Akt is not. Taken together, our results reveal that P. aeruginosa DnaK potently upregulates EBI3 expression, which in turn drives production of the prominent anti-inflammatory cytokine IL-27, as a consequence of TLR4-dependent activation of NF-κB and TLR4-independent activation of the Akt signaling pathway.  相似文献   

11.
12.
IL-8/MCP-1 act as neutrophil/monocyte chemoattractants, respectively. Oxidative stress emerges as a key player in the pathophysiology of obesity. However, it remains unclear whether the TNF-α/oxidative stress interplay can trigger IL-8/MCP-1 expression and, if so, by which mechanism(s). IL-8/MCP-1 adipose expression was detected in lean, overweight, and obese individuals, 15 each, using immunohistochemistry. To detect the role of reactive oxygen species (ROS)/TNF-α synergy as a chemokine driver, THP-1 cells were stimulated with TNF-α, with/without H2O2 or hypoxia. Target gene expression was measured by qRT-PCR, proteins by flow cytometry/confocal microscopy, ROS by DCFH-DA assay, and signaling pathways by immunoblotting. IL-8/MCP-1 adipose expression was significantly higher in obese/overweight. Furthermore, IL-8/MCP-1 mRNA/protein was amplified in monocytic cells following stimulation with TNF-α in the presence of H2O2 or hypoxia (p ˂ 0.0001). Synergistic chemokine upregulation was related to the ROS levels, while pre-treatments with NAC suppressed this chemokine elevation (p ≤ 0.01). The ROS/TNF-α crosstalk involved upregulation of CHOP, ERN1, HIF1A, and NF-κB/ERK-1,2 mediated signaling. In conclusion, IL-8/MCP-1 adipose expression is elevated in obesity. Mechanistically, ROS/TNF-α crosstalk may drive expression of these chemokines in monocytic cells by inducing ER stress, HIF1A stabilization, and signaling via NF-κB/ERK-1,2. NAC had inhibitory effect on oxidative stress-driven IL-8/MCP-1 expression, which may have therapeutic significance regarding meta-inflammation.  相似文献   

13.
Inflammasomes are a group of intracellular multiprotein platforms that play important roles in immune systems. Benzyl isothiocyanate (BITC) is a constituent of cruciferous plants and has been confirmed to exhibit various biological activities. The modulatory effects of BITC on inflammasome-mediated interleukin (IL)-1β expression and its regulatory mechanisms in Pseudomonas aeruginosa (P. aeruginosa) LPS/ATP-stimulated THP-1 cells was investigated. Monocytic THP-1 cells were treated with phorbol myristate acetate (PMA) to induce differentiation into macrophages. Enzyme-linked immunosorbent assays (ELISA) were performed to measure the levels of IL-1β produced in P. aeruginosa LPS/ATP-exposed THP-1 cells. Western blotting was performed to examine the BITC modulatory mechanisms in inflammasome-mediated signaling pathways. BITC inhibited IL-1β production in P. aeruginosa LPS/ATP-induced THP-1 cells. BITC also inhibited activation of leucine-rich repeat protein-3 (NLRP3) and caspase-1 in P. aeruginosa LPS/ATP-induced THP-1 cells. Furthermore, we show that mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) activation in P. aeruginosa LPS was attenuated by BITC. These BITC-mediated modulatory effects on IL-1β production may have therapeutic potential for inflammasome-mediated disorders such as a nasal polyp.  相似文献   

14.
Zinc finger protein A20 is a key negative regulator of inflammation. However, whether A20 may affect inflammation during peritoneal dialysis (PD)-associated peritonitis is still unclear. This study was aimed to investigate the effect of A20 overexpression on lipopolysaccharide (LPS)-induced inflammatory response in rat peritoneal mesothelial cells (RPMCs). Isolated and cultured RPMCs in vitro. Plasmid pGEM-T easy-A20 was transfected into RPMCs by Lipofectamine™2000. The protein expression of A20, phospho-IκBα, IκBα, TNF receptor-associated factor (TRAF) 6 and CD40 were analyzed by Western blot. The mRNA expression of TRAF6, CD40, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were determined by real time-PCR. NF-κB p65 DNA binding activity, IL-6 and TNF-α levels in cells culture supernatant were determined by ELISA. Our results revealed that RPMCs overexpression of A20 lead to significant decrease of LPS-induced IκBα phosphorylation and NF-κB DNA binding activity (all p < 0.01). In addition, A20 also attenuated the expression of TRAF6, CD40, IL-6 and TNF-α as well as levels of IL-6 and TNF-α in cells culture supernatant (all p < 0.05). However, A20 only partly inhibited CD40 expression. Our study indicated that A20 overexpression may depress the inflammatory response induced by LPS in cultured RPMCs through negatively regulated the relevant function of adaptors in LPS signaling pathway.  相似文献   

15.
In Korea and China, Cudrania tricuspidata Bureau (Moraceae) is an important traditional medicinal plant used to treat lumbago, hemoptysis, and contusions. The C. tricuspidata methanol extract suppressed both production of NO and PGE2 in BV2 microglial cells. Cudraflavanone D (1), isolated from this extract, remarkably suppressed the protein expression of inducible NO synthase and cyclooxygenase-2, and decreased the levels of NO and PGE2 in BV2 microglial cells exposed to lipopolysaccharide. Cudraflavanone D (1) also decreased IL-6, TNF-α, IL-12, and IL-1β production, blocked nuclear translocation of NF-κB heterodimers (p50 and p65) by interrupting the degradation and phosphorylation of inhibitor of IκB-α, and inhibited NF-κB binding. In addition, cudraflavanone D (1) suppressed the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 MAPK pathways. This study indicated that cudraflavanone D (1) can be a potential drug candidate for the cure of neuroinflammation.  相似文献   

16.
Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.  相似文献   

17.
Persistent inflammatory reactions in microglial cells are strongly associated with neurodegenerative pathogenesis. Additionally, geranylgeraniol (GGOH), a plant-derived isoprenoid, has been found to improve inflammatory conditions in several animal models. It has also been observed that its chemical structure is similar to that of the side chain of menaquinone-4, which is a vitamin K2 sub-type that suppresses inflammation in mouse-derived microglial cells. In this study, we investigated whether GGOH has a similar anti-inflammatory effect in activated microglial cells. Particularly, mouse-derived MG6 cells pre-treated with GGOH were exposed to lipopolysaccharide (LPS). Thereafter, the mRNA levels of pro-inflammatory cytokines were determined via qRT-PCR, while protein expression levels, especially the expression of NF-κB signaling cascade-related proteins, were determined via Western blot analysis. The distribution of NF-κB p65 protein was also analyzed via fluorescence microscopy. Thus, it was observed that GGOH dose-dependently suppressed the LPS-induced increase in the mRNA levels of Il-1β, Tnf-α, Il-6, and Cox-2. Furthermore, GGOH inhibited the phosphorylation of TAK1, IKKα/β, and NF-κB p65 proteins as well as NF-κB nuclear translocation induced by LPS while maintaining IκBα expression. We showed that GGOH, similar to menaquinone-4, could alleviate LPS-induced microglial inflammation by targeting the NF-kB signaling pathway.  相似文献   

18.
19.
An important member of the defensin family, β-defensin 2, is believed to play an important role in defense against foreign pathogens. In the present study, we constructed lentiviral vectors to express and knockdown β-defensin 2 in rat lungs. The results showed that the infection of β-defensin 2 overexpression lentivirus and β-defensin 2 shRNA effectively increased and suppressed the expression of β-defensin 2 in rat lung, respectively. The overexpression of β-defensin 2 mediated by the lentiviral vector protected lung from infection of Pseudomonas aeruginosa, but shRNA targeting β-defensin 2 aggregated the damage of lung. In addition, we also found that β-defensin 2 overexpression increased basal expression of anti-inflammatory cytokine such as IL-4, IL-10 and IL-13 and decreased levels of proinflammatory cytokines which include IL-1α, IL-1β, IL-5, IL-6, IL-8, IL-18, and TNF-α. Moreover, in the process of cytokine regulation, NF-κB pathway may be involved. Taken together, these data suggest that β-defensin 2 has protective effects against infection of Pseudomonas aeruginosa in rat and plays a role in inflammatory regulation by adjusting cytokine levels.  相似文献   

20.
Catalpol, an iridoid glucoside extracted from the traditional Chinese herbal medicine, Rehmannia glutinosa, is reported to exert neuroprotective, anti-inflammatory, anti-tumor and anti-apoptotic effects. The main aim of the present study was to investigate whether catalpol ameliorates experimental acute pancreatitis (AP) induced by sodium taurocholate (STC). AP was induced in rats via retrograde injection of 4% STC (0.1 mL/100 g) into the biliopancreatic duct. Rats were pre-treated with saline or catalpol (50 mg/kg) 2 h before STC injection. At 12, 24 and 48 h after injection, the severity of AP was evaluated using biochemical and morphological analyses. Pretreatment with catalpol led to a significant reduction in serum amylase and lipase activities, pancreatic histological damage, myeloperoxidase (MPO) activity, interleukin (IL)-1β, IL-6 and TNF-α levels, and activation of nuclear factor kappa B (NF-κB). Moreover, administration of catalpol increased the viability of pancreatic acinar cells and inhibited NF-κB expression in vitro. Our results collectively support the potential of catalpol as a highly effective therapeutic agent for treatment of AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号