首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
2.
A specific oligodeoxynucleotide (ODN), ODN MT01, was found to have positive effects on the proliferation and activation of the osteoblast-like cell line MG 63. In this study, the detailed signaling pathways in which ODN MT01 promoted the differentiation of osteoblasts were systematically examined. ODN MT01 enhanced the expression of osteogenic marker genes, such as osteocalcin and type I collagen. Furthermore, ODN MT01 activated Runx2 phosphorylation via ERK1/2 mitogen-activated protein kinase (MAPK) and p38 MAPK. Consistently, ODN MT01 induced up-regulation of osteocalcin, alkaline phosphatase (ALP) and type I collagen, which was inhibited by pre-treatment with the ERK1/2 inhibitor U0126 and the p38 inhibitor SB203580. These results suggest that the ERK1/2 and p38 MAPK pathways, as well as Runx2 activation, are involved in ODN MT01-induced up-regulation of osteocalcin, type I collagen and the activity of ALP in MG 63 cells.  相似文献   

3.
目的研究乳酸杆菌对子宫内膜上皮细胞增殖的丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)通路的作用机制。方法将103个/mL乳酸杆菌与子宫内膜上皮细胞共培养20、40、60 min,各时间点收集细胞,采用Western blot法检测子宫内膜上皮细胞MAPK通路中ERK1/2、JNK、P38蛋白及其磷酸化水平。在子宫内膜上皮细胞中加入40 ng/mL U0126,再加入103个/mL乳酸杆菌,共培养20、40、60 min,各时间点收集细胞,采用Western blot及CCK-8法检测U0126对ERK1/2、JNK、P38、p90RSK蛋白磷酸化及细胞增殖的影响。结果乳酸杆菌能促进子宫内膜上皮细胞MAPK通路中ERK1/2蛋白发生磷酸化,共培养40和60 min组ERK1/2磷酸化水平显著增加,与对照(0 min)和20 min组相比,差异有统计学意义(P <0. 05),但与40和60 min组比较,差异无统计学意义(P> 0. 05);MAPK通路中JNK和P38总蛋白水平和磷酸化蛋白水平均无明显变化(P> 0....  相似文献   

4.
5.
Transforming growth factor-β1 (TGF-β1)-induced myofibroblast transdifferentiation from orbital fibroblasts is known to dominate tissue remodeling and fibrosis in Graves’ ophthalmopathy (GO). However, the signaling pathways through which TGF-β1 activates Graves’ orbital fibroblasts remain unclear. This study investigated the role of the mitogen-activated protein kinase (MAPK) pathway in TGF-β1-induced myofibroblast transdifferentiation in human Graves’ orbital fibroblasts. The MAPK pathway was assessed by measuring the phosphorylation of p38, c-Jun N-terminal kinase (JNK), and extracellular-signal-regulated kinase (ERK) by Western blots. The expression of connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), and fibronectin representing fibrogenesis was estimated. The activities of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) responsible for extracellular matrix (ECM) metabolism were analyzed. Specific pharmacologic kinase inhibitors were used to confirm the involvement of the MAPK pathway. After treatment with TGF-β1, the phosphorylation levels of p38 and JNK, but not ERK, were increased. CTGF, α-SMA, and fibronectin, as well as TIMP-1 and TIMP-3, were upregulated, whereas the activities of MMP-2/-9 were inhibited. The effects of TGF-β1 on the expression of these factors were eliminated by p38 and JNK inhibitors. The results suggested that TGF-β1 could induce myofibroblast transdifferentiation in human Graves’ orbital fibroblasts through the p38 and JNK pathways.  相似文献   

6.
7.
Lysophosphatidic acid (LPA), a naturally occurring glycerophospholipid, can evoke various biological responses, including cell migration, proliferation and survival, via activation of G protein-coupled receptors (GPCRs). However, the role of LPA receptors and details of LPA signaling in migration are largely unexplored. In this study we detect the expression of LPA1 and LPA3 receptors in rat aortic smooth muscle cells (RASMCs). LPA stimulated RASMCs migration in a dose-dependent manner and induced the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and extracellular signal-regulated kinase (ERK). LPA-induced cell migration was significantly inhibited by specific LPA1/LPA3-receptor antagonist Dioctylglycerol pyrophosphate (8:0) (DGPP8.0) at higher concentration. Migration of cells toward LPA was partially, but significantly, reduced in the presence of SB-203580, a p38 MAPK inhibitor, but not PD98059, an ERK inhibitor. In addition, pertussis toxin (PTX), a Gi protein inhibitor, induced an inhibitory effect on p38 MAPK, ERK phosphorylation and RASMCs migration. These data suggest that LPA-induced migration is mediated through the Gi-protein-coupled LPA1 receptor involving activation of a PTX-sensitive Gi / p38MAPK pathway.  相似文献   

8.
It is firmly established that resveratrol, a natural food compound abundantly found in grape skins and red wine, has beneficial properties for human health. In the present study, we investigated the effect of basic fibroblast growth factor (FGF-2) on osteoprotegerin (OPG) synthesis in osteoblast-like MC3T3-E1 cells and whether resveratrol affects the OPG synthesis. FGF-2 stimulated both the OPG release and the expression of OPG mRNA. Resveratrol significantly suppressed the FGF-2-stimulated OPG release and the mRNA levels of OPG. SRT1720, an activator of SIRT1, reduced the FGF-2-induced OPG release and the OPG mRNA expression. PD98059, an inhibitor of upstream kinase activating p44/p42 mitogen-activated protein (MAP) kinase, had little effect on the FGF-2-stimulated OPG release. On the other hand, SB203580, an inhibitor of p38 MAP kinase, SP600125, an inhibitor of stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and Akt inhibitor suppressed the OPG release induced by FGF-2. Resveratrol failed to affect the FGF-2-induced phosphorylation of p44/p42 MAP kinase, p38 MAP kinase or SAPK/JNK. The phosphorylation of Akt induced by FGF-2 was significantly suppressed by resveratrol or SRT1720. These findings strongly suggest that resveratrol down-regulates FGF-2-stimulated OPG synthesis through the suppression of the Akt pathway in osteoblasts and that the inhibitory effect of resveratrol is mediated at least in part by SIRT1 activation.  相似文献   

9.
Sulfuretin is one of the major flavonoid components in Rhus verniciflua Stokes (Anacardiaceae) isolates. In this study, we investigated the protective effects of sulfuretin against tert-butyl hydroperoxide (t-BHP)-induced oxidative injury. The results indicated that the addition of sulfuretin before t-BHP treatment significantly inhibited cytotoxicity and reactive oxygen species (ROS) production in human liver-derived HepG2 cells. Sulfuretin up-regulated the activity of the antioxidant enzyme heme oxygenase (HO)-1 via nuclear factor E2-related factor 2 (Nrf2) translocation into the nucleus and increased the promoter activity of the antioxidant response element (ARE). Moreover, sulfuretin exposure enhanced the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family. Furthermore, cell treatment with a JNK inhibitor (SP600125) and ERK inhibitor (PD98059) reduced sulfuretin-induced HO-1 expression and decreased its protective effects. Taken together, these results suggest that the protective effect of sulfuretin against t-BHP-induced oxidative damage in human liver-derived HepG2 cells is attributable to its ability to scavenge ROS and up-regulate the activity of HO-1 through the Nrf2/ARE and JNK/ERK signaling pathways. Therefore, sulfuretin could be advantageous as a bioactive source for the prevention of oxidative injury.  相似文献   

10.
Oxaliplatin (OHP) is a platinum-based agent that can cause peripheral neuropathy, an adverse effect in which the dorsal root ganglion (DRG) neurons are targeted. Zonisamide has exhibited neuroprotective activities toward adult rat DRG neurons in vitro and therefore, we aimed to assess its potential efficacy against OHP-induced neurotoxicity. Pretreatment with zonisamide (100 μM) alleviated the DRG neuronal death caused by OHP (75 μM) and the protective effects were attenuated by a co-incubation with 25 μM of the mitogen-activated protein kinase (MAPK; MEK/ERK) inhibitor, U0126, or the phosphatidyl inositol-3′-phosphate-kinase (PI3K) inhibitor, LY294002. Pretreatment with zonisamide also suppressed the OHP-induced p38 MAPK phosphorylation in lined DRG neurons, ND7/23, while the OHP-induced DRG neuronal death was alleviated by pretreatment with the p38 MAPK inhibitor, SB239063 (25 μM). Although zonisamide failed to protect the immortalized rat Schwann cells IFRS1 from OHP-induced cell death, it prevented neurite degeneration and demyelination-like changes, as well as the reduction of the serine/threonine-specific protein kinase (AKT) phosphorylation in DRG neuron–IFRS1 co-cultures exposed to OHP. Zonisamide’s neuroprotection against the OHP-induced peripheral sensory neuropathy is possibly mediated by a stimulation of the MEK/ERK and PI3K/AKT signaling pathways and suppression of the p38 MAPK pathway in DRG neurons. Future studies will allow us to solidify zonisamide as a promising remedy against the neurotoxic adverse effects of OHP.  相似文献   

11.
Berteroin (5-methylthiopentyl isothiocyanate) is a sulforaphane analog present in cruciferous vegetables, including Chinese cabbage, rucola salad leaves, and mustard oil. We examined whether berteroin exerts anti-inflammatory activities using lipopolysaccharide (LPS)-stimulated Raw 264.7 macrophages and 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin inflammation models. Berteroin decreased LPS-induced release of inflammatory mediators and pro-inflammatory cytokines in Raw 264.7 macrophages. Berteroin inhibited LPS-induced degradation of inhibitor of κBα (IκBα) and nuclear factor-κB p65 translocation to the nucleus and DNA binding activity. Furthermore, berteroin suppressed degradation of IL-1 receptor-associated kinase and phosphorylation of transforming growth factor β activated kinase-1. Berteroin also inhibited LPS-induced phosphorylation of p38 MAPK, ERK1/2, and AKT. In the mouse ear, berteroin effectively suppressed TPA-induced edema formation and down-regulated iNOS and COX-2 expression as well as phosphorylation of AKT and ERK1/2. These results demonstrate that berteroin exhibits potent anti-inflammatory properties and suggest that berteroin can be developed as a skin anti-inflammatory agent.  相似文献   

12.
The mechanism of gap junction enhancer (PQ1) induced cytotoxicity is thought to be attributed to the change in connexin 43 (Cx43) expression; therefore, the effects of Cx43 modulation in cell survival were investigated in mammary carcinoma cells (FMC2u) derived from a malignant neoplasm of a female FVB/N-Tg(MMTV-PyVT)634Mul/J (PyVT) transgenic mouse. PQ1 was determined to have an IC50 of 6.5 µM in FMC2u cells, while inducing an upregulation in Cx43 expression. The effects of Cx43 modulation in FMC2u cell survival was determined through transfection experiments with Cx43 cDNA, which induced an elevated level of protein expression similar to that seen with PQ1 exposure, or siRNA to silence Cx43 protein expression. Overexpression or silencing of Cx43 led to a reduction or an increase in cell viability, respectively. The mitogen-activated protein kinase (MAPK) family has been implicated in the regulation of cell survival and cell death; therefore, the gap junctional intercellular communication (GJIC)-independent function of PQ1 and Cx43 in the Raf/Mitogen-activated protein kinase/ERK kinase/extracellular-signal-regulated kinase (Raf-MEK-ERK) cascade of cellular survival and p38 MAPK-dependent pathway of apoptosis were explored. PQ1 treatment activated p44/42 MAPK, while the overexpression of Cx43 resulted in a reduced expression. This suggests that PQ1 affects the Raf-MEK-ERK cascade independent of Cx43 upregulation. Both overexpression of Cx43 and PQ1 treatment stimulated an increase in the phosphorylated form of p38-MAPK, reduced levels of the anti-apoptotic protein Bcl-2, and increased the cleavage of pro-caspase-3. Silencing of Cx43 protein expression led to a reduction in the phosphorylation of p38-MAPK and an increase in Bcl-2 expression. The mechanism behind PQ1-induced cytotoxicity in FMC2u mammary carcinoma cells is thought to be attributed to the change in Cx43 expression. Furthermore, PQ1-induced apoptosis through the upregulation of Cx43 may depend on p38 MAPK, highlighting that the effect of PQ1 on gap junctions as well as cellular survival via a MAPK-dependent pathway.  相似文献   

13.
Proliferation and migration of vascular smooth muscle cells (VSMC) are important in the development and/or progression of many cardiovascular diseases, including atherosclerosis. Evidence shows that matrix metalloproteinase (MMP)-2 and MMP-9 are related to the pathogenesis of atherosclerosis. The expressions of MMP-2 and MMP-9 in atherosclerosis are regulated via various pathways, such as p38 mitogen activated protein kinase (MAPK), extracellular signal regulated kinase 1 and 2 (ERK1/2), Akt, and nuclear factor kappa (NF-κB). Di(2-ethylhexyl) phthalate (DEHP) has been shown to induce atherosclerosis by increasing tumor necrosis factor (TNF)-α, interleukin (IL)-6, and intercellular adhesion molecule (ICAM) productions. However, whether DEHP poses any effects on MMP-2 or MMP-9 expression in VSMC has not yet been answered. In our studies, rat aorta VSMC was treated with DEHP (between 2 and 17.5 ppm) and p38 MAPK, ERK1/2, Akt, NF-κB, and MMP-2 and MMP-9 proteins and activities were measured. Results showed that the presence of DEHP can induce higher MMP-2 and MMP-9 expression than the controls. Similar results on MMP-regulating proteins, i.e., p38 MAPK, ERK1/2, Akt, and NF-κB, were also observed. In summary, our current results have showed that DEHP can be a potent inducer of atherosclerosis by increasing MMP-2 and MMP-9 expression at least through the regulations of p38 MAPK, ERK1/2, Akt, and NF-κB.  相似文献   

14.
Diallyl disulfide (DADS), a sulfur compound derived from garlic, has various biological properties, such as anticancer, antiangiogenic and anti-inflammatory effects. However, the mechanisms of action underlying the compound’s anticancer activity have not been fully elucidated. In this study, the apoptotic effects of DADS were investigated in DU145 human prostate carcinoma cells. Our results showed that DADS markedly inhibited the growth of the DU145 cells by induction of apoptosis. Apoptosis was accompanied by modulation of Bcl-2 and inhibitor of apoptosis protein (IAP) family proteins, depolarization of the mitochondrial membrane potential (MMP, ΔΨm) and proteolytic activation of caspases. We also found that the expression of death-receptor 4 (DR4) and Fas ligand (FasL) proteins was increased and that the level of intact Bid proteins was down-regulated by DADS. Moreover, treatment with DADS induced phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular-signal regulating kinase (ERK), p38 MAPK and c-Jun N-terminal kinase (JNK). A specific JNK inhibitor, SP600125, significantly blocked DADS-induced-apoptosis, whereas inhibitors of the ERK (PD98059) and p38 MAPK (SB203580) had no effect. The induction of apoptosis was also accompanied by inactivation of phosphatidylinositol 3-kinase (PI3K)/Akt and the PI3K inhibitor LY29004 significantly increased DADS-induced cell death. These findings provide evidence demonstrating that the proapoptotic effect of DADS is mediated through the activation of JNK and the inhibition of the PI3K/Akt signaling pathway in DU145 cells.  相似文献   

15.
Saturated stearic acid (SA) induces apoptosis in the human pancreatic β-cells NES2Y. However, the molecular mechanisms involved are unclear. We showed that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway in these cells. Therefore, we tested the role of p38 MAPK signaling pathway activation in apoptosis induction by SA in NES2Y cells. Crosstalk between p38 MAPK pathway activation and accompanying ERK pathway inhibition after SA application was also tested. The inhibition of p38 MAPK expression by siRNA silencing resulted in a decrease in MAPKAPK-2 activation after SA application, but it had no significant effect on cell viability or the level of phosphorylated ERK pathway members. The inhibition of p38 MAPK activity by the specific inhibitor SB202190 resulted in inhibition of MAPKAPK-2 activation and noticeable activation of ERK pathway members after SA treatment but in no significant effect on cell viability. p38 MAPK overexpression by plasmid transfection produced an increase in MAPKAPK-2 activation after SA exposure but no significant influence on cell viability or ERK pathway activation. The activation of p38 MAPK by the specific activator anisomycin resulted in significant activation of MAPKAPK-2. Concerning the effect on cell viability, application of the activator led to apoptosis induction similar to application of SA (PARP cleavage and caspase-7, -8, and -9 activation) and in inhibition of ERK pathway members. We demonstrated that apoptosis-inducing concentrations of SA activate the p38 MAPK signaling pathway and that this activation could be involved in apoptosis induction by SA in the human pancreatic β-cells NES2Y. However, this involvement does not seem to play a key role. Crosstalk between p38 MAPK pathway activation and ERK pathway inhibition in NES2Y cells seems likely. Thus, the ERK pathway inhibition by p38 MAPK activation does not also seem to be essential for SA-induced apoptosis.  相似文献   

16.
Macrophages are abundant immune cells in the tumor microenvironment and are crucial in regulating tumor malignancy. We previously reported that ionizing radiation (IR) increases the production of interleukin (IL)-1β in lipopolysaccharide (LPS)-treated macrophages, contributing to the malignancy of colorectal cancer cells; however, the mechanism remained unclear. Here, we show that IR increases the activity of cysteine-aspartate-specific protease 1 (caspase-1), which is regulated by the inflammasome, and cleaves premature IL-1β to mature IL-1β in RAW264.7 macrophages. Irradiated RAW264.7 cells showed increased expression of NLRC4 inflammasome, which controls the activity of caspase-1 and IL-1β production. Silencing of NLRC4 using RNA interference inhibited the IR-induced increase in IL-1β production. Activation of the inflammasome can be regulated by mitogen-activated protein kinase (MAPK)s in macrophages. In RAW264.7 cells, IR increased the phosphorylation of p38 MAPK but not extracellular signal-regulated kinase and c-Jun N-terminal kinase. Moreover, a selective inhibitor of p38 MAPK inhibited LPS-induced IL-1β production and NLRC4 inflammasome expression in irradiated RAW264.7 macrophages. Our results indicate that IR-induced activation of the p38 MAPK-NLRC4-caspase-1 activation pathway in macrophages increases IL-1β production in response to LPS.  相似文献   

17.
Inflammation is a critically important barrier found in innate immunity. However, severe and sustained inflammatory conditions are regarded as causes of many different serious diseases, such as cancer, atherosclerosis, and diabetes. Although numerous studies have addressed how inflammatory responses proceed and what kinds of proteins and cells are involved, the exact mechanism and protein components regulating inflammatory reactions are not fully understood. In this paper, to determine the regulatory role of mixed lineage kinase 3 (MLK3), which functions as mitogen-activated protein kinase kinase kinase (MAP3K) in cancer cells in inflammatory response to macrophages, we employed an overexpression strategy with MLK3 in HEK293 cells and used its inhibitor URMC-099 in lipopolysaccharide (LPS)-treated RAW264.7 cells. It was found that overexpressed MLK3 increased the mRNA expression of inflammatory genes (COX-2, IL-6, and TNF-α) via the activation of AP-1, according to a luciferase assay carried out with AP-1-Luc. Overexpression of MLK3 also induced phosphorylation of MAPKK (MEK1/2, MKK3/6, and MKK4/7), MAPK (ERK, p38, and JNK), and AP-1 subunits (c-Jun, c-Fos, and FRA-1). Phosphorylation of MLK3 was also observed in RAW264.7 cells stimulated by LPS, Pam3CSK, and poly(I:C). Finally, inhibition of MLK3 by URMC-099 reduced the expression of COX-2 and CCL-12, phosphorylation of c-Jun, luciferase activity mediated by AP-1, and phosphorylation of MAPK in LPS-treated RAW264.7 cells. Taken together, our findings strongly suggest that MLK3 plays a central role in controlling AP-1-mediated inflammatory responses in macrophages and that this enzyme can serve as a target molecule for treating AP-1-mediated inflammatory diseases.  相似文献   

18.
Necrostatin-1 (Nec-1) inhibits necroptosis by allosterically inhibiting the kinase activity of receptor-interacting protein 1 (RIP1), which plays a critical role in necroptosis. RIP1 is a crucial adaptor kinase involved in the activation of NF-κB, production of reactive oxygen species (ROS) and the phosphorylation of mitogen activated protein kinases (MAPKs). NF-κB, ROS and MAPKs all play important roles in apoptotic signaling. Nec-1 was regarded as having no effect on apoptosis. Here, we report that Nec-1 increased the rate of nuclear condensation and caspases activation induced by a low concentration of shikonin (SHK) in HL60, K562 and primary leukemia cells. siRNA-mediated knockdown of RIP1 significantly enhanced shikonin-induced apoptosis in K562 and HL60 cells. Shikonin treatment alone could slightly inhibit the phosphorylation of ERK1/2 in leukemia cells, and the inhibitory effect on ERK1/2 was significantly augmented by Nec-1. We also found that Nec-1 could inhibit NF-κB p65 translocation to the nucleus at a later stage of SHK treatment. In conclusion, we found that Nec-1 can promote shikonin-induced apoptosis in leukemia cells. The mechanism by which Nec-1 sensitizes shikonin-induced apoptosis appears to be the inhibition of RIP1 kinase-dependent phosphorylation of ERK1/2. To our knowledge, this is the first study to document Nec-1 sensitizes cancer cells to apoptosis.  相似文献   

19.
This study aimed to challenge chemoresistance by curcumin (CUR) with drug-selected human lung cancer A549 sublines that continuously proliferate in the present of docetaxel (DOC) and vincristine (VCR). Their sensitivities to CUR were measured by MTT assay and the particular intracellular reactive oxygen species (ROS) was detected by fluorescence activated cell sorting (FACS) analysis. Apoptosis was analyzed by Annexin V assay of the flow cytometry. Inhibitors and RNA interference were used to examine the signaling pathway regulated by the kinases. The obtained data demonstrated that CUR induces chemoresistant cell apoptosis by generating ROS and application of N-acetylcysteine (NAC) blocks ROS production, resulting in apoptosis suppression. Phosphorylation of extracellular regulated kinase (ERK), p38 MAPK, and eIF-2α were increased but c-Jun N-terminal kinase (JNK) did not increase when chemoresistant cells were treated with CUR. Downregulation of ERK and p38 MAPK phosphorylation by their inhibitors had no effect on CUR-induced apoptosis. Interestingly, the knockdown of p38 MAPK with shRNA significantly reduced CUR-induced apoptosis on the chemoresistant sublines. Phosphorylation of the eIF-2α protein was inhibited when p38 MAPK was knocked down in DOC-resistant A549 cells, but a high level of phosphorylated eIF-2α protein remained on the VCR-resistant A549 cells when p38 MAPK was knocked down. These data confirmed that CUR-augmented ROS potently induced apoptosis via upregulated p38 MAPK phosphorylation. Therefore, activated p38 MAPK is considered a pro-apoptotic signal for CUR-induced apoptosis of chemoresistant human lung cancer cells.  相似文献   

20.
T-LAK-cell-originated protein kinase (TOPK) is a PDZ-binding kinase (PBK) that was recently identified as a novel member of the mitogen-activated protein kinase (MAPK) family. It has been shown to play an important role in many cellular functions. However, its role in cardiac function remains unclear. Thus, we have herein explored the biological function of TOPK in myocardial ischemia/reperfusion (I/R) and oxidative stress injury in H9C2 cardiomyocytes. I/R and ischemic preconditioning (IPC) were induced in rats by 3-hour reperfusion after 30-min occlusion of the left anterior descending coronary artery and by 3 cycles of 5-min I/R. Hydrogen peroxide (H2O2) was used to induce oxidative stress in H9C2 cardiomyocytes. TOPK expression was analyzed by western blotting, RT-PCR, immunohistochemical staining, and immunofluorescence imaging studies. The effects of TOPK gene overexpression and its inhibition via its inhibitor HI-TOPK-032 on cell viability and Bcl-2, Bax, ERK1/2, and p-ERK1/2 protein expression were analyzed by MTS assay and western blotting, respectively. The results showed that IPC alleviated myocardial I/R injury and induced TOPK activation. Furthermore, H2O2 induced TOPK phosphorylation in a time-dependent manner. Interestingly, TOPK inhibition aggravated the H2O2-induced oxidative stress injury in myocardiocytes, whereas overexpression relieved it. In addition, the ERK pathway was positively regulated by TOPK signaling. In conclusion, our results indicate that TOPK might mediate a novel survival signal in myocardial I/R, and that its effect on anti-oxidative stress involves the ERK signaling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号