首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用化学水浴法和磁控溅射法分别在AZO、FTO、ITO透明导电玻璃衬底上制备了CdS薄膜,利用扫描电镜、XRD以及透射光谱等测试手段,研究了两种制备方法对不同衬底生长CdS薄膜形貌、结构和光学性能的影响.研究结果表明,不同方法制备的CdS薄膜表面形貌均依赖于衬底的类型,水浴法制备的CdS薄膜晶粒度较大,表面相对粗糙.不同方法制备的CdS薄膜均为立方相和六角相的混相结构,溅射法制备的多晶薄膜衍射峰清晰、尖锐,结晶性较好.水浴法制备的CdS薄膜透过率整体低于溅射法,但在短波处优势明显.  相似文献   

2.
太阳电池中CdS多晶薄膜的微结构及性能   总被引:9,自引:1,他引:9  
采用化学水浴法制备了CdS多晶薄膜,通过XRD,AFM,XPS和光学透过率谱等测试手段研究了CdS多晶薄膜生长过程中的结构和性能.结果表明,随着沉积的进行,薄膜更加均匀、致密,与衬底粘附力增强,其光学能隙逐渐增大,薄膜由无定形结构向六方(002)方向优化生长,同时出现了Cd(OH)2相.在此基础上,通过建立薄膜的生长机制与性能的联系,沉积出优质CdS多晶薄膜,获得了转化效率为13.38%的CdS/CdTe小面积电池.  相似文献   

3.
报道了CdS薄膜的CBD法沉积及其结构特性,其中的水浴溶液包括硫脲、乙酸镉、乙酸铵和氨水溶液.研究了水浴溶液的pH值、温度、各反应物溶液的浓度和滴定硫脲与倾倒硫脲等基本工艺参数对CdS薄膜结构特性的影响.其中,溶液的pH值对CdS薄膜的特性起着关键的作用.XRD图显示了随着溶液pH值的变化,薄膜的晶相由六方相向立方相转变.CdS薄膜的这两种晶相对CIGS薄膜太阳电池性能的影响不相同.c-CdS(立方相的CdS)与CIGS之间的晶格失配和界面态密度分别为1.419%和8.507×1012cm-2,而h-CdS(六方相的CdS)与CIGS之间的晶格失配和界面态密度则分别为32.297%和2.792×1012cm-2.高效CIGS薄膜太阳电池需要的是立方相CdS薄膜.  相似文献   

4.
The growth modes of CdS thin films on glass in a chemical bath were analysed using scanning electron microscopy and optical microscopy. The results of these studies show that the film growth occurs by ion-by-ion condensation and by colloidal particles of CdS adhering to the substrate. Both mechanisms are operative from the initial stages of film growth. The predominance of one or other of these two growth modes depends on the abundance of Cd and S ions present in the solution, which is determined by the amount of complexing and sulphurising agents and ammonia used for the controlled release of Cd and S ions into the solution. The growth mode influences the optical properties of the films.  相似文献   

5.
分别采用化学池沉积(CBD)和真空蒸发法,在三种衬底(玻片、ITO玻片、SnO2玻片)上沉积CdS薄膜,并利用扫描电镜(SEM)、透射光谱、X射线衍射(XRD)等方法对沉积膜进行了测试分析,同时阐述了两种不同方法下CdS膜的生长沉积机制。  相似文献   

6.
Chemical bath deposition (CBD) has been used extensively to deposit thin films of CdS for window layers in solar cells. The microtopography or roughness of the surface, however, can affect the quality of the film by influencing the morphology, uniformity, or crystal phase of the CdS film. Here, we have demonstrated that thin films of CdS can be successfully patterned on surfaces bearing micropillars as a model surface for roughness. The phase purity of CdS deposited on the micropillar surfaces is uniform and conformal with the formation of packed clusters on the micropillars at pH 10 that form flower-like structures at long deposition times. Smaller crystallites were observed on micropillar arrays at pH 8 with “network” like structures observed at long deposition times. Additionally, by controlling the pH of the chemical bath, the hexagonal and cubic crystal phases of CdS were both accessible in high purity at temperatures as low as 85 °C.  相似文献   

7.
CdS thin films are a promising electron transport layer in PbS colloidal quantum dot (CQD) photovoltaic devices. Some traditional deposition techniques, such as chemical bath deposition and RF (radio frequency) magnetron sputtering, have been employed to fabricate CdS films and CdS/PbS CQD heterojunction photovoltaic devices. However, their power conversion efficiencies (PCEs) are moderate compared with ZnO/PbS and TiO2/PbS heterojunction CQD solar cells. Here, efficiencies have been improved substantially by employing solution‐processed CdS thin films from a single‐source precursor. The CdS film is deposited by a straightforward spin‐coating and annealing process, which is a simple, low‐cost, and high‐material‐usage fabrication process compared to chemical bath deposition and RF magnetron sputtering. The best CdS/PbS CQD heterojunction solar cell is fabricated using an optimized deposition and air‐annealing process achieved over 8% PCE, demonstrating the great potential of CdS thin films fabricated by the single‐source precursor for PbS CQDs solar cells.  相似文献   

8.
Microstructural changes at the CdS/CdTe solar cell interface where close‐spaced sublimation (CSS) is used as the growth technique to deposit the p‐type CdTe absorber layer are studied by systematic layer characterization at various stages during heterojunction growth. CdS layers grown by both chemical bath deposition (CBD) and CSS provide a basis for determining the effects of CdS crystallinity, grain size, and oxygen content on the subsequent CdTe layer. As‐grown CBD CdS films exhibit small grains and variations in optical properties attributed to film impurities. In contrast, CSS yields CdS films with good crystallinity, larger grains, and nearly ideal optical properties. The hexagonal nature of CSS‐grown CdS is seen to nucleate hexagonal CdTe during the initial stages of CdTe film growth. Cubic CdS deposited by CBD in contrast promotes cubic CdTe nucleation. Oxygen anneals in the latter case can aid hexagonal CdTe nucleation. Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) of the CdS/CdTe interface show CdS‐dependent differences in interdiffusion at the interface. This interdiffusion appears to be determined by the oxygen level in the CdS. When low‐oxygen‐containing CSS CdS films are used, sulfur diffusion is substantial, leading to significant consumption of the CdS layer. When these same films are annealed in oxygen, the consumption is reduced. Te diffusion into the CdS layer is also observed to decrease with oxygen anneals. Optical modeling shows that Te alloying with the CdS layer can greatly reduce the short‐circuit current of CdS/CdTe devices. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
在载玻片或ITO涂覆的玻璃上采用化学热解法沉积CdS固体薄膜,沉积温度在350-540℃之间,部分制备的CdS薄膜进行200-600℃的退火热处理,由SEM,AFMT和XRD分析测量退火热处理前后的CdS薄膜的微观结构,结果表明,沉积温度低于540℃以下制备的CdS薄膜具有类六方结构相当于540℃沉积的CdS薄膜的晶料尺寸依赖于沉积温度及不同基体的情况也在本文中进行了讨论。  相似文献   

10.
Antibacterial capabilities of nanocrystalline cadmium sulfide (CdS) thin films have been developed against Gram-positive and Gram-negative bacteria in dark and sunlight at 60 °C. For this purpose, a strain of Gram-positive Staphylococcus aureus, and two strains of Gram-negative bacteria (Pseudomonas aeruginosa, and Escherichia coli) were used. The nanocrystalline CdS thin films have been prepared using a chemical bath deposition (CBD) method at different thicknesses (50, 80 and 100 nm). The different deposition parameters including the speed of rotation of substrate, temperature of chemical bath, pH of solution and time of the deposition were optimized. The Polyvinylpyrrollidone (PVP) was successfully used as capping agent in order to stop the agglomeration in the CdS thin films. It was found that, CdS thin films have remarkable antibacterial activity in dark and sunlight and it could be applied as antimicrobial agent in medical field. In order to confirm the crystalline structure of CdS thin films, the polycrystalline nature of the deposited CdS thin films with hexagonal structure was obtained. Furthermore, the structural parameters including lattice parameters, cell volume, the space group, average grain size, dislocation density and the strain have been calculated. The topography and surface roughness of the CdS thin films have been studied before and after the bacteriostatic effect using Scanning Electron Microscopy (SEM). Furthermore, the compositions of nanocrystalline CdS thin films have been evaluated using Energy Dispersive X-ray emission (EDX) and a Transmission Electron Microscope (TEM). Based on the optical measurements in the range of 300–2500 nm, the band gap energy of the prepared CdS thin films was found to be 2.4 eV.  相似文献   

11.
Growth of cadmium sulfide(CdS)thin films on glass substrates was carried out by atmospheric pressure metal-organic chemical vapor deposition(AP-MOCVD)using Cd(S2CNEt2)2 as the single precursor.Changes in the surface morphology of the deposited CdS thin films were investigated by atomic force microscope(AFM)as the function of substrate temperature(Ts),vaporizing temperature(Tv),and Ar flow rate.With the increase of Tv,CdS thin films evolved from pyramidal structure with fine grains to columnar structure with large grains.X-ray diffraction(XRD)patterns indicated that the CdS films had random orientation at the lower T,and preferred orientation at the higher Tv.In addition,Ts had a great effect on the surface roughness of the CdS films,and a quantum dot-like structural CdS films were obtained in a narrow range of T,with high Ar flow rate.Furthermore,the optical properties of the CdS films were measured using ultraviolet-visible(UV/VIS)spectrometer.  相似文献   

12.
The influence of the chemical bath composition on the photocurrent response, film morphology and optical transmittance of chemically deposited CdS thin films is reported. The bath parameters such as concentrations of triethanolamine, thiourea, ammonia and cadmium acetate and the bath temperature controlled the photosensitivity, photocurrent decay, morphology and optical transmittance of the films. The optimum concentration of the bath for getting good-quality photosensitive films with good optical transmittance was identified in this investigation.  相似文献   

13.
In this paper, Cd1-xZnxS thin films were prepared by chemical bath deposition(CBD), and the effects of different zinc doping content on the morphological structure and optical properties of Cd1-xZnxS buffer layers are systematically discussed. The experimental results show that in the deposition process of different substrates, the crystal structure of the film is all hexagonal, and when the concentration of zinc sulfate(ZnSO4) precursor is ...  相似文献   

14.
CdS是一种直接能隙半导体,其带隙约为2.42eV,是一种良好的太阳能电池窗口层材料和过渡层材料。化学水浴法沉积CdS薄膜具有工艺简单,成本低廉,成膜均匀、致密以及可大面积生产等优点。本文通过对化学水浴法沉积CdS薄膜的研究,阐述了CdS膜的生成和生长过程及其机理,并不断优化此方法中的各种工艺参数,得到了适合做铜铟镓硒薄膜太阳能电池过渡层的CdS薄膜,并对该薄膜的形貌、结构和性能进行了分析。  相似文献   

15.
PLD法制备ZnO薄膜的退火特性和蓝光机制研究   总被引:1,自引:0,他引:1  
通过脉冲激光沉积(PLD)方法,在O2中和100~500℃衬底温度下,用粉末靶在Si(111)衬底上制备了ZnO薄膜,在300℃温度下生长的薄膜在400~800℃温度和N2氛围中进行了退火处理,用X射线衍射(XRD)谱、原子力显微镜(AFM)和光致发光(PL)谱表征薄膜的结构和光学特性。XRD谱显示,在生长温度300℃时获得较好的复晶薄膜,在退火温度700℃时获得最好的六方结构的结晶薄膜;AFM显示,在此退火条件下,薄膜表面平整、晶粒均匀;PL谱结果显示,在700℃退火时有最好的光学特性。  相似文献   

16.
A study of electrical transport in CdS thin films is reported. We have observed, for the first time, that CdS thin film conductivity obeys the Meyer–Neldel rule (MNR). This was deduced from linking the conductivity pre-exponential factor to the activation energy variation. CdS films were deposited by chemical bath deposition at different solution temperatures in order to vary the electrical activation energy of the films. A correlation between the MNR rule and the disorder in the film network is highlighted. The multi-trapping process in the band tail-localized states governs the conductivity in CdS films. This explains the MNR observation in CdS films. The variation of the electrical conductivity pre-exponential factor and activation energy are correlated to the disorder in the film network; this was explained in terms of polaron formation and phonon–electron coupling with disorder.  相似文献   

17.
Copper selenide (Cu3Se2)thin films have been synthesized with Se as the precursor in aqueous solution by chemical bath deposition technique at room temperature. We have investigated the influence of the growth time ranging from 30 to 90 min on structural, optical and electrical properties of Cu3Se2 thin films. The as-grown film at 60 min exhibits a tetragonal structure and is (101) oriented. The maximum value of crystal size D= 55 nm is attained for Cu3Se2 films grown at 60 min. The Raman spectrum reveals a pronounced peak at 259 cm-1, which is assigned to vibrational (stretching) modes from the covalent Se-Se bonds. The optical band gap energy is 1.91 to 2.01 eV with growth time increased from 30 to 90 min. The scanning electron microscopy (SEM) study reveals that the grains are uniform and spread over the entire surface of the substrate of the film at 60 min. The Hall effect study reveals that the film exhibits p-type conductivity. The synthesized film showed good absorbance in the visible region which signifies that synthesized Cu3Se2 films can be suitable as a sensitized material in semiconductor sensitized solar cells.  相似文献   

18.
Nanostructures of CdO thin films are prepared by chemical bath deposition (CBD) technique. The synthesized film is annealed in static air by using the hotplate at 373, 473, 573 and 673 K for 10 min. The effect of annealing temperature on structural, morphological, optical and electrical properties of CdO thin films has been investigated. The prepared thin films are characterised by X-ray diffraction (XRD), atomic force microscope (AFM), optical reflection microscope (ORM), UV–Visible Spectrophotometer and electrical resistivity. XRD shows the emergence of the cubic phase of CdO film in a preferred orientation (111) plane at 573 K. The AFM and ORM show that CdO films have smooth homogeneous surface in the formula with the emergence of nanoclusters gathering as nanoparticles with the average of grain size about 100 nm at 573 K. The optical properties prove that deposited films have high transparency within the visible range of the spectrum that reaches to more than 85% with a wide band gap that extends from 2.42 eV to 2.7 eV. The electrical properties of the CdO films show that resistivity decreases with increased annealing temperatures. In addition, it is proved that more than one activation energy appears and they change according to the temperature of annealing and this comes as a result of the polycrystalline structure. This study indicates that the properties of CdO thin films could be improved with annealing temperature and these films can be used in many technological applications.  相似文献   

19.
目前CdS材料的制备方法有很多种,但是最常用的是化学水浴法。本文研究了浓度、反应溶液pH值、温度、沉积时间对CdS缓冲层薄膜的影响,对CIGS薄膜太阳能电池缓冲层CdS薄膜的制备方法进行了论述。  相似文献   

20.
Cd1-xZnxS thin films were deposited by chemical bath deposition(CBD)on the glass substrate to study the influence of cadmium sulfate concentration on the structural characteristics of the thin film.The SEM results show that the thin film sur-faces under the cadmium sulfate concentration of 0.005 M exhibit better compactness and uniformity.The distribution dia-grams of thin film elements illustrate the film growth rate changes on the trend of the increase,decrease,and increase with the increase of cadmium sulfate concentration.XRD studies exhibit the crystal structure of the film is the hexagonal phase,and there are obvious diffraction peaks and better crystallinity when the concentration is 0.005 M.Spectrophotometer test results demonstrate that the relationship between zinc content x and optical band gap value Eg can be expressed by the equation Eg(x)=0.59x2+0.69x+2.43.Increasing the zinc content can increase the optical band gap,and the absorbance of the thin film can be improved by decreasing the cadmium sulfate concentration,however,all of them have good transmittance.At a concen-tration of 0.005 M,the thin film has good absorbance in the 300-800 nm range,80%transmittance,and band gap value of 3.24 eV,which is suitable for use as a buffer layer for solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号