首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc oxide thin films have been grown by electrodeposition technique onto Cu and ITO-coated glass substrates from an aqueous zinc nitrate solution with addition of sodium thiosulfate at 90℃.The effects of sodium thiosulfate on the electrochemical deposition of ZnO were investigated by cyclic voltammetry and chronoamperometry techniques.Deposited films were obtained at -0:60 V vs.SCE and characterized by XRD,SEM,FTIR, optical,photoelectrochemical and electrical measurements.Thickness of the deposited film was measured to be 357 nm.X-ray diffraction results indicated that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along (002) plane.FTIR results confirmed the presence of ZnO films at peak 558 cm-1.SEM images showed uniform,compact morphology without any cracks and films composed of large flower-like ZnO agglomerates with star-shape.Optical properties of ZnO reveal a high optical transmission (>80%) and high absorption coefficient (α>105 cm-1)in visible region.The optical energy band gap was found to be 3.28 eV.Photoelectrochemical measurements indicated that the ZnO films had n-type semiconductor conduction.Electrical properties of ZnO films showed a low electrical resistivity of 6.54 Ω·cm,carrier concentration of -1.3×1017cm-3 and mobility of 7.35 cm2V-1s-1.  相似文献   

2.
Ga-doped ZnO films were prepared at 10 mTorr of oxygen over a broad temperature range using pulsed laser deposition. The carrier concentration of as-deposited films decreased monotonically with deposition temperature over a temperature range of 25°C to 450°C. Post-deposition annealing of as-deposited films in forming gas (5% H2 in argon) or vacuum resulted in a substantial increase in both carrier concentration and electron mobility. The figure of merit was highest for films deposited at 250°C then annealed in forming gas at 400°C. The optical transmittance was near 90% throughout the visible and near-infrared spectral regions. These results indicate that Ga-doped ZnO is a viable alternative to transparent indium-based conductive oxides.  相似文献   

3.
采用电子束沉积技术生长w掺ZnO(WZO,ZnO:w)透明导电氧化物(TCO)薄膜(即WZO-TCO薄膜)并研究了衬底温度(100-350℃)对薄膜微观结构、表面形貌以及光电性能的影响。实验表明,随着衬底温度的升高,薄膜的晶体质量取得明显改善(从非晶化状态转变到结晶状态),生长的WZO薄膜呈现C轴择优取向[即(002)...  相似文献   

4.
Cadmium oxide (CdO) is a transparent conducting oxide (TCO) with versatile applications, many of which are linked to its transparency in the Vis/NIR spectral range in addition to its unique electrical conductivity. Its optoelectronic properties can be controlled in order to bring them into a desired choice by doping method. Usually resistivity of TCO could be reduced by increasing Nel, which, in turns, reduces the transparency (especially in the NIR region) of TCO. Therefore, it is important to seek ways to reduce ρ by increasing of μel (rather than Nel) that also reduces the absorption.In the present work, CdO thin films doped with different amounts of vanadium (V) ions were deposited on glass and silicon wafer substrates by physical vapour deposition method. The films were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), optical absorption spectroscopy, and dc-electrical measurements. The obtained results show significant improvements in the conductivity (σ), mobility (μ), and carrier concentration (Nel) of host CdO. The measured utmost enhancement in conductivity by 420%, mobility by 766%, and carrier concentration by 201% for CdO films doped with 4–5 wt% V. This suggests the possibility of using V-doped CdO films in different TCO applications.  相似文献   

5.
Zinc oxide (ZnO) was largely studied in various applications such as photovoltaic conversion, optoelectronics and piezoelectric, because of its interesting physical properties (morphological, structural, optical and electrical). The present work deals with the preparation of zinc oxide thin films (ZnO) deposited by the spray pyrolysis method. The starting solution was zinc chloride (ZnCl2). Effects of solution molarity and substrate temperature on films properties were investigated. All films deposited were characterized by various techniques such as X-ray diffraction for structural characterizations, profilometry for thickness measurements, UV–vis transmission spectrophotometry for optical properties and the four probes conductivity measurements for electrical characterization. The X-ray diffraction (XRD) patterns show that the films deposited are polycrystalline with (0 0 2) plan as preferential orientation. The UV–vis spectroscopy confirms the possibility of good transparent ZnO thin films deposition with an average transmission of about ∼85% in the visible region. However, the measured electrical resistivities of the deposited films were in the order of 104 Ω cm  相似文献   

6.
Increasing the conductivity of polycrystalline zinc oxide films without impacting the transparency is a key aspect in the race to find affordable and high quality material as replacement of indium‐containing oxides. Usually, ZnO film conductivity is provided by a high doping and electron concentration, detrimental to transparency, because of free carrier absorption. Here we show that hydrogen post‐deposition plasma treatment applied to ZnO films prepared by metalorganic low‐pressure chemical vapor deposition allows a relaxation of the constraints of the conductivity/transparency trade‐off. Upon treatment, an increase in electron concentration and Hall mobility is observed. The mobility reaches high values of 58 and 46 cm2V?1s?1 for 2‐μm‐ and 350‐nm‐thick films, respectively, without altering the visible range transparency. From a combination of opto‐electronic measurements, hydrogen is found, in particular, to reduce electron trap density at grain boundaries. After treatment, the values for intragrain or optical mobility are found similar to Hall mobility, and therefore, electron conduction is found to be no longer limited by the phenomenon of grain boundary scattering. This allows to achieve mobilities close to 60 cm2V?1s?1, even in ultra‐transparent films with carrier concentration as low as 1019 cm?3.  相似文献   

7.
采用射频磁控溅射法在不同衬底温度和不同氮气分压下在石英玻璃衬底上制备氮化锌薄膜. 利用XRD和喇曼散射仪分析了样品的晶体结构和组成. 结果表明当氮气分压为1/2时可以生成多晶单一相的氮化锌薄膜. 利用霍尔效应和光学透过谱测量了样品的电学和光学性质. 结果表明衬底温度对样品的电学和光学性质有很大的影响. 衬底温度从100℃上升到300℃时,样品的电阻率从0.49降低到0.023Ω·cm. 电子浓度从2.7×1016升高到8.2×1019cm-3. 在衬底温度为200℃,氮气分压为1/2时,样品的光学带隙为1.23eV.  相似文献   

8.
Indium tin oxide (ITO) and indium tin tantalum oxide (ITTO) films were deposited on glass substrates by magnetron sputtering technology with one or two targets. Properties of ITO and ITTO films deposited at different oxygen flow rates were contrastively studied. Ta-doping strengthens along the orientation of (400) plane and leads to better crystalline structure as well as to a decrease in surface roughness. The increase in oxygen flow rate increases sheet resistance and reduces carrier concentration, and ITTO films show higher carrier concentration. Certain oxygen flow rates can improve the visible light transmittance of films, but excessive oxygen can worsen the optical properties. The carrier concentration has an important influence on near-IR reflection, near-UV absorption and optical band gap. The optical band gap decreases with the increasing of oxygen flow rate, and ITTO films show wider optical band gap than ITO films. ITTO films prepared by co-sputtering reveal better optical–electrical properties and chemical and thermal stability than ITO films.  相似文献   

9.
To evaluate the influence of the ZnO buffer layer and Al proportion on the properties of ZnO: Al (AZO)/ZnO bi-layer films, a series of AZO/ZnO films are deposited on the quartz substrates by electron beam evaporation. The X-ray diffraction measurement shows that the crystal quality of the films is improved with the increase of the film thickness. The electrical properties of the films are investigated. The carrier concentration and Hall mobility both increase with the increase of buffer layer thickness. However, the resistivity reaches the lowest at about 50 nm-thick buffer layer. The lowest resistivity and the maximum Hall mobility are both obtained at 1 wt% Al concentration. But the optical transmittance of all the films is greater than 80% regardless of the buffer layer thickness with Al concentration lower than 5 wt% in the visible region.  相似文献   

10.
The challenges to realizing diode lasers based on thin films of organic semiconductors are primarily related to low charge carrier mobility in these materials. This not only limits the thickness of organic films to ⩽100 nm in electrically pumped devices, but it also leads to changes in the optical properties of organic films induced by the large number of carriers trapped in the materials subjected to an intense electrical excitation. We describe organic waveguide laser structures composed of thin organic films and transparent indium-tin-oxide electrodes. These waveguides allow for efficient injection of an electrical current into the organic layers and provide for low optical losses required in a laser. The changes in the optical properties of organic thin films induced by electrical excitation are studied using electroluminescence and pump and probe spectroscopy. Induced transparency and absorption observed in the organic materials may be related to triplet excitons or trapped charge carriers. Pump-induced absorption is also observed in organic films under quasi-CW optical excitation. These effects must be taken into account both in the design of organic diode laser structures and in the selection of charge transporting materials  相似文献   

11.
Molebdenum (Mo) thin films were deposited on well-cleaned soda-lime glass substrates using DC-plasma magnetron sputtering. In the design of experiment deposition was optimized for maximum beneficial characteristics by monitoring effect of process variables such as deposition power (100–200 W). Their electrical, structural and morphological properties were analyzed to study the effect of these variables. The electrical resistivity of Mo thin films could be reduced by increasing deposition power. Within the range of analyzed deposition power, Mo thin films showed a mono crystalline nature and the crystallites were found to have an orientation along [110] direction. The surface morphology of thin films showed that a highly dense micro structure has been obtained. The surface roughness of films increased with deposition power. The adhesion of Mo thin films could be improved by increasing the deposition power. Atomic force microscopy was used for the topographical study of the films and to determine the roughness of the films. X-ray diffractrometer and scanning electron microscopy analysis were used to investigate the crystallinity and surface morphology of the films. Hall effect measurement system was used to find resistivity, carrier mobility and carrier density of deposited films. The adhesion test was performed using scotch hatch tape adhesion test. Mo thin films prepared at deposition power of 200 W, substrate temperature of 23°C and Ar pressure of 0.0123 mbar exhibited a mono crystalline structure with an orientation along (110) direction, thickness of ~550 nm and electrical resistivity value of 0.57 × 10?4 Ω cm.  相似文献   

12.
Middle-frequency alternative magnetron sputtering was used to deposit transparent conductive ZAO (ZnO:Al) thin films with ZAO (98 wt%ZnO+2 wt%Al2O3) ceramic target on glass and Si wafers. The influences of the various deposition parameters on the structural, optical and electrical performances of ZAO films have been studied. The structural characteristics of the films were investigated by the X-ray diffractometer and atomic force microscope, while the visible transmittance, carrier concentration and Hall mobility were studied by UV-VIS and the Hall tester, respectively. The lowest resistivity obtained in the work was 4.6×10−4 Ω cm for the film with average transmittance of 90.0% within the visible wavelength range and sheet resistance of 32 Ω, which was deposited at 250 °C and 0.8 Pa.  相似文献   

13.
Copper telluride onion flower like microstructures,constructed by quantum dots with various diameters,were obtained by a potentiostatic electrodeposition method at room temperature.The structural,optic...  相似文献   

14.
The influence of the parameters of the deposition process on the stoichiometric composition and electrical and optical properties of ZnO films deposited by the ion-beam sputtering of a ZnO target is studied. It is established that, upon sputtering of a ZnO target with stoichiometric composition, there is a deficit of oxygen in the films deposited. Even for the case of target sputtering in a pure O2 atmosphere, the stoichiometry index of the films is no higher than 0.98. A decrease in the oxygen content in the films is accompanied by a sharp decrease in the resistivity to 35–40 Ω m, narrowing of the optical band gap, and a shift of the optical transmittance edge from 389 to 404 nm. All of the variations in the optical and electrical properties of the ZnO films can be attributed to variations in the concentration and mobility of free charge carriers in the films.  相似文献   

15.
The feasibility of a new fabrication route for N and Ga codoped p-type ZnO thin films on glass substrates, consisting of DC sputtering deposition of Zn3N2:Ga precursors followed by in situ oxidation in high purity oxygen, has been studied. The effects of oxidation temperature on the structural, optical and electrical properties of the samples were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), optical transmittance and Hall effect measurements. The results were compared to a control film without Ga. XRD analyses revealed that the Zn3N2 films entirely transformed into ZnO films after annealing Zn3N2 films in oxygen over 500 ℃ for 2 h. Hall effect measurements confirmed p-type conduction in N and Ga codoped ZnO films with a low resistivity of 19.8 Ω·cm, a high hole concentration of 4.6 × 1018 cm-3 and a Hall mobility of 0.7 cm2/(V·s). These results demonstrate a promising approach to fabricate low resistivity p-type ZnO with high hole concentration.  相似文献   

16.
电沉积法制备SnS薄膜   总被引:13,自引:2,他引:11  
采用了电沉积在SnO2透明导电玻璃上制备了硫化锡(SnS)薄膜,并对用电化学法实现Sn和S共沉积的条件参数进行了理论探讨,实验中,利用SnCl2和Na2S2O3的混合水溶液作为电沉积液制备了均匀的SnS薄膜,对实验参数进行了优化,对薄膜进行了X-射线衍射(XRD),扫描电子显微(SEM)测量及光学测试,。实验发现,制备的薄膜为多晶的斜方晶系结构,晶粒大小约为150nm,直接光学带隙在1.36-1.73eV之间可调。  相似文献   

17.
Structural and electrical properties of Al‐doped ZnO (AZO) films deposited by atomic layer deposition (ALD) are investigated to study the extrinsic doping mechanism of a transparent conducting oxide. ALD‐AZO films exhibit a unique layer‐by‐layer structure consisting of a ZnO matrix and Al2O3 dopant layers, as determined by transmission electron microscopy analysis. In these layered AZO films, a single Al2O3 dopant layer deposited during one ALD cycle could provide ≈4.5 × 1013 cm?2 free electrons to the ZnO. The effective field model for doping is suggested to explain the decrease in the carrier concentration of ALD‐AZO films when the interval between the Al2O3 layers is reduced to less than ≈2.6 nm (>3.4 at% Al). By correlating the electrical and structural properties, an extrinsic doping mechanism of ALD‐AZO films is proposed in which the incorporated Al atoms take oxygen from the ZnO matrix and form doubly charged donors, such as oxygen vacancies or zinc interstitials.  相似文献   

18.
Ge films deposited by vacuum deposition at 425?C are generally p-type. This paper discusses the use of pulsed-electron beam annealing and ion implantation to modify the carrier concentration of such films. Electron beam annealing has been used to reduce the carrier concentration by more than a factor of 30 and n-type films have been obtained by phosphorus implantation and subsequent thermal annealing. TEM, RBS and Hall measurements have been used to characterize the films. The electrical properties of the as-grown films are believed to be defect dominated.  相似文献   

19.
Highly transparent and conducting undoped zinc oxide films have been obtained with a best resistivity of ~1.1 × 10-3 Ω cm, a carrier density of ~1.5 × 1020 cm?3 and a mobility of ~38 cm2V?1s ?1. These were produced by activated reactive evaporation at a deposition rate of 2 to 8Å/s with a substrate temperature ≤200° C. The films deposited by this process were found to have resistivities that were thickness independent and also were relatively insensitive to deposition parameters. In terms of conductivity, it was found that films deposited at higher temperatures (T > 300°+ C) were always inferior to the films deposited below 200° C. High temperature vacuum annealing (350° C) significantly degraded the resistivity of the undoped films deposited at low temperature; this was attributable to a drop in both the electron concentration and the mobility. Aluminum doping was found to be able to stabilize the electron concentration while the drop in mobility was found to be related to the choice of substrate.  相似文献   

20.
利用电子束反应沉积技术制备了高迁移率I2O3基W-Mo共掺(IMWO,I<,2>O<,3>:WO<,3>/MoO<,3>)薄膜,研究了不同等量WO<,3>-MoO<,3>掺杂浓度对薄膜的微观结构、光学性能和电学性能的影响.IMWO薄膜的表面形貌呈现"类金字塔"型.随着WO<,3>-MoO<,3>共掺量的增加,IMWO薄...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号