首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
4H-SiC junction barrier Schottky(JBS)diodes with four kinds of design have been fabricated and characterized using two different processes in which one is fabricated by making the P-type ohmic contact of the anode independently,and the other is processed by depositing a Schottky metal multi-layer on the whole anode.The reverse performances are compared to find the influences of these factors.The results show that JBS diodes with field guard rings have a lower reverse current density and a higher breakdown voltage,and with independent P-type ohmic contact manufacturing,the reverse performance of 4H-SiC JBS diodes can be improved effectively. Furthermore,the P-type ohmic contact is studied in this work.  相似文献   

2.
Schottky diodes with an Ag/n-Si/W/Cu structure and 100μm in diameter were studied.Analyzing the silver metal surface coating on the n-Si substrate using a scanning probe microscopy(SPM) device showed a large number of nano patches in the surface with dimensions of 0 to 100 nm.The potential distribution of the patches revealed that the potential of each patch with the neighboring patches was different.The electrical characteristics of the devices were studied between temperature ranges of 300 and 380 K.When the temperature ideality factor approximately increases,the potential barrier height decreases.The potential barrier height was calculated separately from theⅠ-Ⅴand C-V characteristics.The main reasons for the significant difference between room temperature and higher temperatures were the differences in patch distribution,the different potentials of each patch,and the interactions between them.The effective potential barrier height depended on the degree of inhomogeneity,and thus the operating potential barrier height in the contact surface was smaller than the average value,and the ideality factor was more than unitary.With the increase in the potential value,the ideality factor becomes close to unitary, and with increasing temperatures,the ideality factor is increased.In this case,the maximum potential barrier height accrues at a greater distance from the metal contact.For this reason,at high temperatures the average value of the potential barrier height is smaller.Moreover,with increasing temperature,the ideality factor is increased.  相似文献   

3.
Ohmic contacts with Ti/Al/Ti/Au source and drain electrodes on A1GaN/GaN high electron mobility transistors (HEMTs) were fabricated and subjected to rapid thermal annealing (RTA) in flowing N2. The wafer was divided into 5 parts and three of them were annealed for 30 s at 700, 750, and 800 ℃, respectively, the others were annealed at 750 ℃ for 25 and 40 s. Due to the RTA, a change from Schottky contact to Ohmic contact has been obtained between the electrode layer and the A1GaN/GaN heterojunction layer. We have achieved a low specific contact resistance of 7.41 × 10-6Ω cm2 and contact resistance of 0.54 Ω.mm measured by transmission line mode (TLM), and good surface morphology and edge acuity are also desirable by annealing at 750 ℃ for 30 s. The experiments also indicate that the performance of ohmic contact is first improved, then it reaches a peak, finally degrading with annealing temperature or annealing time rising.  相似文献   

4.
Based on current voltage(I-V_g) and capacitance voltage(C-V_g) measurements,a reliable procedure is proposed to determine the effective surface potential V_d(V_g) in Schottky diodes.In the framework of thermionic emission,our analysis includes both the effect of the series resistance and the ideality factor,even voltage dependent. This technique is applied to n-type indium phosphide(n-InP) Schottky diodes with and without an interfacial layer and allows us to provide an interpretation of the observed peak on the C-V_g measurements.The study clearly shows that the depletion width and the flat band barrier height deduced from C-V_g,which are important parameters directly related to the surface potential in the semiconductor,should be estimated within our approach to obtain more reliable information.  相似文献   

5.
The optical properties of Silicon—doped InGaN and GaN grown on sapphire by MOCVD have been investigated by photoluminescence (PL) method. At room temperature, the band—gap peak of InGaN is 437.0 nm and its full width of half—maximum (FWHM) is about 14.3 nm. The band—gap peak and FWHM for GaN are 364.4 nm and 9.5 nm, respectively. By changing the temperature from 20 K to 293 K, it is found that the PL intensity of samples decreases but the FWHM broadens with the increasing of the temperature.GaN sample shows red—shift, InGaN sample shows red—blue—red—shift. The temperature dependence of peak energy shift is studied and explained.  相似文献   

6.
Design and fabrication of Schottky barrier diodes (SBD) with a commercial standard 0.35μm CMOS process are described.In order to reduce the series resistor of Schottky contact,interdigitating the fingers of schottky diode layout is adopted.The I-V,C-V,and S parameter are measured.The parameters of realized SBD such as the saturation current,breakdown voltage,and the Schottky barrier height are given.The SPICE simulation model of the realized SBDs is given.  相似文献   

7.
Using the effect of the temperature on the capacitance-voltage (C-V) and conductance-voltage (G/ω-V)characteristics of PtSi/n-Si (111) Schottky diodes the profile of apparent doping concentration (NDapp),the potential difference between the Fermi energy level and the bottom of the conduction band (Vn),apparent barrier height (ΦBapp),series resistance (Rs) and the interface state density Nss have been investigated.From the temperature dependence of (C-V) it was found that these parameters are non-uniformly changed with increasing temperature in a wide temperature range of 79-360 K.The voltage and temperature dependences of apparent carrier distribution we attributed to the existence of self-assembled patches similar the quantum wells,which formed due to the process of PtSi formation on semiconductor and the presence of hexagonal voids of Si (111).  相似文献   

8.
This paper reports on the fabrication and investigation of a surface-type organic semiconductor copper phthalocyanine(CuPc) based diode.A thin film of CuPc of thickness 100 nm was thermally sublimed onto a glass substrate with preliminary deposited metallic electrodes to form a surface-type Ag/CuPc/Au Schottky diode.The current-voltage characteristics were measured at room temperature under dark conditions.The barrier height was calculated as 1.05 eV.The values of mobility and conductivity was found to be 1.74×10-9 cm2/(V·s) and 5.5×10-6Ω-1·cm-1,respectively.At low voltages the device showed ohmic conduction and the space charge limited current conduction mechanisms were dominated at higher voltages.  相似文献   

9.
The practical design of GaN-based Schottky barrier diodes(SBDs) incorporating a field plate(FP) structure necessitates an understanding of their working mechanism and optimization criteria.In this work,the influences of the parameters of FPs upon breakdown of the diode are investigated in detail and the design rules of FP structures for GaN-based SBDs are presented for a wide scale of material and device parameters.By comparing three representative dielectric materials(SiO2,Si3N4 and Al2O3) selected for fabricating FPs,it is found that the product of dielectric permittivity and critical field strength of a dielectric material could be used as an index to predict its potential performance for FP applications.  相似文献   

10.
Spin injection and detection in bulk GaN were investigated by performing magnetotransport measurements at low temperatures. A non-local four-terminal lateral spin valve device was fabricated with Co/GaN Schottky contacts. The spin injection efficiency of 21% was achieved at 1.7 K. It was confirmed that the thin Schottky barrier formed between the heavily ndoped GaN and Co was conducive to the direct spin tunneling, by reducing the spin scattering relaxation through the interface states.  相似文献   

11.
周静涛  杨成樾  葛霁  金智 《半导体学报》2013,34(6):064003-4
Based on characteristics such as low barrier and high electron mobility of lattice matched In0.53Ga0.47 As layer,InP-based Schottky barrier diodes(SBDs) exhibit the superiorities in achieving a lower turn-on voltage and series resistance in comparison with GaAs ones.Planar InP-based SBDs have been developed in this paper.Measurements show that a low forward turn-on voltage of less than 0.2 V and a cutoff frequency of up to 3.4 THz have been achieved.The key factors of the diode such as series resistance and the zero-biased junction capacitance are measured to be 3.32Ωand 9.1 fF,respectively.They are highly consistent with the calculated values.The performances of the InP-based SBDs in this work,such as low noise and low loss,are promising for applications in the terahertz mixer,multiplier and detector circuits.  相似文献   

12.
A 320-356GHz fixed-tuned frequency doubler is realized with discrete Schottky diodes mounted on 50μm thick quartz substrate.Influence of circuit channel width and thermal dissipation of the diode junctions are discussed for high multiplying effficiency.The doubler circuit is flip-chip mounted on gold electroplated oxygenfree copper film for grounding of RF and DC signals,and better thermal transportation.The whole multiplying circuit is optimized and established in Computer simulation technology (CST) suite.The highest measured multiplying efficiency is 8.0% and its output power is 5.4mW at 328GHz.The measured typical output power is 4.0mW in 320-356GHz.  相似文献   

13.
The effect of rapid thermal annealing (RTA) on Ni/Au contacts on P-type GaN was investigated in terms of surface morphology and diffusion depth of metallic species. Ni/Au contacts were evaporated on the P-type 0.5 μm thick top layer of a GaN P/N homojunction. Optical micrographs revealed that the contact morphology degrades when annealed above 800°C for 1 min. At the same time, both Ni and Au atoms strongly diffuse in the P-type layer and even can reach the junction for a 1 min long annealing at 900°C, therefore making the junction structure unoperable. This behavior was evidenced using the Auger voltage contrast (AVC) technique.  相似文献   

14.
王冲  马晓华  冯倩  郝跃  张进城  毛维 《半导体学报》2009,30(5):054002-4
An A1GaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1μm and a source-drain distance of 4μm, exhibits a maximum drain current density of 684mA/mrn at Vgs = 4V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional A1GaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device.  相似文献   

15.
Ni/Au Schottky contacts with thicknesses of either 50(?)/50(?) or 600(?)/2000(?) were deposited on strained Al_(0.3)Ga_(0.7)N/GaN heterostructures.Using the measured C-V curves and I-V characteristics at room temperature,the calculated density of the two-dimensional electron-gas(2DEG) of the 600(?)/2000(?) thick Ni/Au Schottky contact is about 9.13×10~(12) cm~(-2) and that of the 50(?)/50(?) thick Ni/Au Schottky contact is only about 4.77×10~(12) cm~(-2).The saturated current increases from 60.88 to 86.3...  相似文献   

16.
The current through a metal-semiconductor junction is mainly due to the majority carriers.Three distinctly different mechanisms exist in a Schottky diode:diffusion of the semiconductor carriers in metal,thermionic emission-diffusion(TED) of carriers through a Schottky gate,and a mechanical quantum that pierces a tunnel through the gate.The system was solved by using a coupled Poisson-Boltzmann algorithm.Schottky BH is defined as the difference in energy between the Fermi level and the metal band carrier majority of the metal-semiconductor junction to the semiconductor contacts.The insulating layer converts the MS device in an MIS device and has a strong influence on its current-voltage(I-V) and the parameters of a Schottky barrier from 3.7 to 15 eV.There are several possible reasons for the error that causes a deviation of the ideal behaviour of Schottky diodes with and without an interfacial insulator layer.These include the particular distribution of interface states,the series resistance, bias voltage and temperature.The GaAs and its large concentration values of trap centers will participate in an increase in the process of thermionic electrons and holes,which will in turn act on the I-V characteristic of the diode,and an overflow maximum value[NT = 3×1020]is obtained.The I-V characteristics of Schottky diodes are in the hypothesis of a parabolic summit.  相似文献   

17.
Surface treatment plays an important role in the process of making high performance AlGaN/GaN HEMTs. A clean surface is critical for enhancing device performance and long-term reliability. By experimenting with different surface treatment methods, we find that using UV/ozone treatment significantly influences the electrical properties of Ohmic contacts and Schottky contacts. According to these experimental phenomena and Xray photoelectron spectroscopy surface analysis results, the effect of the UV/ozone treatment and the reason that it influences the Ohmic/Schottky contact characteristics of AlGaN/GaN HEMTs is investigated.  相似文献   

18.
Beta-phase gallium oxide(β-Ga_2O_3) Schottky barrier diodes were fabricated on highly doped single-crystal substrates,where their temperature-dependent electrical properties were comprehensively investigated by forward and reverse current density – voltage and capacitance – voltage characterization. Both the Schottky barrier height and the ideality factor showed a temperature-dependence behavior, revealing the inhomogeneous nature of the Schottky barrier interface caused by the interfacial defects. With a voltage-dependent Schottky barrier incorporated into thermionic emission theory, the inhomogeneous barrier model can be further examined. Furthermore, the reverse leakage current was found to be dominated by the bulk leakage currents due to the good material and surface quality. Leakage current per distance was also obtained. These results can serve as important references for designing efficient β-Ga_2O_3 electronic and optoelectronic devices on highly doped substrates or epitaxial layers.  相似文献   

19.
A suitable contacting scheme for p-(Al)GaN facilitating quick feedback and accurate measurements is proposed in this study. 22 nm p+-GaN followed by 2 nm p-In0.2Ga0.8N was grown on p-type layers by metal-organic chemical vapor deposition. Samples were then cut into squares after annealing and contact electrodes using In balls were put at the corners of the squares. Good linearity between all the electrodes was confirmed in I–V curves during Hall measurements even with In metal.Serval samples tak...  相似文献   

20.
This work reports on direct evidence of localized states in undoped SnO2 nanobelts.Effects of disorder and electron localization were observed in Schottky barrier dependence on the temperature and in thermally stimulated currents.A transition from thermal activation to hopping transport mechanisms was also observed.The energy levels found by thermally stimulated current experiments were in close agreement with transport data confirming the role of localization in determining the properties of devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号