共查询到16条相似文献,搜索用时 69 毫秒
1.
2.
及时检测井盖病害对城镇居民出行安全至关重要。针对现有井盖分类体系不够完备以及检测精度低的问题,提出了基于改进YOLOv5的井盖病害检测方法。首先,根据北京市城市事件处置文件制定了井盖的分类标准,并制作了专门检测井盖病害的数据集;其次,为提高街景影像中井盖病害的检测精度,在YOLOv5的基础上提出新的主干网络以提升网络的特征提取能力,并在网络的主干中引入CBAM注意力机制,增强了网络的抗干扰能力;最后,通过在街景数据上与其他方法的对比实验表明,提出的改进方法在精确率、召回率和调和平均值分别提升了1.9%、3.7%和2.6%,表明所提出的改进方法具有抑制道路病害、路面交通标识等干扰地物影响的能力。 相似文献
3.
小目标检测是目标检测任务中的难点问题之一,低分辨率的小目标存在可视化信息少、小目标占比小、在图像中分布不均匀等问题。为了应对这些挑战,提出了一种基于注意力机制改进的RetinaNet算法。首先对原始RetinaNet算法的特征提取模块ResNet-FPN进行改进,使网络能够更全面地提取目标特征信息;其次在FPN模块的P3层和P4层添加注意力机制,设计了精度更高的目标检测器ResNet-FPN*-Attention-RetinaNet。实验结果表明,相比于原始的RetinaNet网络,提出的ResNet-FPN*-Attention-RetinaNet网络在VOC2007测试集上的平均精度提升了0.55%;在制作的交通目标数据集上平均精度提升了2.3%,针对小目标的AP提高了4.52%。实验证明了所提出的ResNet-FPN*-Attention-RetinaNet网络比RetinaNet更加准确,更加适用于小目标检测任务。 相似文献
4.
鸟类活动故障已经成为高速铁路的主要隐患之一,找出和清理接触网的鸟巢是一种应对手段。传统的鸟巢目标检测方法需要人工提取特征,而手工设计的特征难以在复杂的接触网场景中保证泛化能力。针对该问题,本文提出使用基于深度学习的目标检测算法识别接触网鸟巢,并提出一种基于一阶段目标检测模型RetinaNet的改进模型,增加P2特征层,扩充网络的感受野范围,以更好地检测出目标较小的鸟巢。最后使用高铁车载设备的数据集对基于深度学习的目标检测算法进行了训练和测试。实验结果表明:基于深度学习的目标检测算法在接触网鸟巢检测任务上表现优秀,且改进RetinaNet模型的mAP值达到了90.4%,优于原模型,对于高速铁路的避障任务具有参考和应用价值. 相似文献
5.
目前,在智能交通领域使用深度学习方法进行车辆目标检测已成为研究热点。针对传统机器学习方法的性能易受光照、角度、图像质量等外界因素影响,检测步骤繁琐等问题,通过对当下经典的一阶目标检测模型和二阶目标检测模型进行分析,提出了一种基于改进的一阶目标检测模型RetinaNet的车辆目标检测方法,使用深度残差网络自主获取图像特征,融合MobileNet网络结构进行模型加速,把复杂交通场景下的目标检测问题转化为车辆类型的三分类问题,利用KITTI数据集进行训练,并使用实际场景中的图像进行测试。实验结果表明,改进的RetinaNet模型在保证检测时间的情况下,相比原RetinaNet模型MAP值提高了2.2个百分点。 相似文献
6.
目前基于深度学习算法的目标检测技术在合成孔径雷达(SAR)图像船舶检测中取得了显著的成果,然而仍存在着小目标船舶和近岸密集排列船舶检测效果差的问题。针对上述问题,提出了基于改进RetinaNet的船舶检测算法。在传统RetinaNet算法的基础上,首先,将特征提取网络残差块中的卷积改进为分组卷积,以增加网络宽度,从而提高网络的特征提取能力;其次,在特征提取网络的后两个阶段加入注意力机制,让网络更加专注于目标区域,从而提升目标检测能力;最后,将软非极大值抑制(Soft-NMS)加入到算法中,降低算法对于近岸密集排列船舶检测的漏检率。在高分辨率SAR图像数据集(HRSID)和SAR船舶检测数据集(SSDD)上的实验结果表明,所提改进算法对于小目标船舶和近岸船舶的检测效果得到了有效提升,与当前优秀的目标检测模型Faster R-CNN、YOLOv3和CenterNet等相比,在检测精度和速度上更加优越。 相似文献
7.
针对目标检测任务中目标实例密集、重叠等因素导致的检测精度不高的问题,提出一种改进回归损失函数与动态非极大值抑制的目标检测框架。采用结合排斥因子Rep的GIoU-Loss进行目标位置回归,在增加回归参数间相关性的同时降低候选边框向邻近真值偏移概率。Rep-GIoU-Loss不仅有效提升目标位置回归精度,对目标遮挡情形也具有较好的鲁棒性。此外,增加稠密度预测分支预测目标被遮挡程度,并将遮挡程度预测值作为NMS方法的动态阈值,以减少漏检、虚检目标实例。实验结果表明,改进方法检测精度在PASCAL VOC2007测试数据集上提高了1.3个百分点,自制数据集可提高2.8个百分点,验证了该方法的有效性。 相似文献
8.
为提高医用塑瓶包装生产线上装箱计数的效率、准确率及稳定性,本文提出一种基于深度学习的装箱计数检测算法,实现在线实时计数。首先,构建以ResNet为骨架网络,使用特征金字塔网络产生多尺度特征图并适当删减卷积层的改进RetinaNet网络。然后,使用聚类算法优化Anchor尺寸,使算法能够自适应歪瓶、倒瓶等异常情况下的计数检测,从而降低漏检率并提高定位精度。最后,在实际装箱数据集上对算法进行实验评测,结果表明该算法抗干扰能力强、稳健可靠,在满足生产条件下能够快速、准确地对装箱塑瓶进行计数检测,计数精度可达99.98%以上,单张检测时间为33 ms,满足了生产线实时检测要求。 相似文献
9.
为了提高混凝土结构损伤视觉检测的自动化水平,提高检测精度,提出了一种基于RetinaNet方法改进的实时目标检测网络。在网络特征提取部分引入了具有位置信息的通道注意力与多头自注意力,多头自注意力模块位于残差网络的最后一个卷积阶段,代替原有的3×3卷积层,而通道注意力则采用嵌入的方式插入到每个残差块中,使每个卷积阶段都能利用注意力机制进行权重调整。改进RetinaNet检测方法的有效性在自建的混凝土结构多类型损伤数据集上进行了验证实验,所提方法的mAP达到了85.0%,检测速度达到了21.9fps,实验结果表明,论文提出的检测方法能够有效进行实时的混凝土结构损伤检测,并且保证了检测精度。 相似文献
10.
针对传统目标检测模型参数量巨大,制约算法部署与模型推理实时性的问题,提出一种基于改进RetinaNet检测模型的轻量化实时目标检测网络。使用MobileNet-V2代替RetinaNet模型中的ResNet骨干网络,降低整体模型的参数量;设计锚框引导采样机制,基于特征金字塔输出特征层生成感兴趣区域掩码,减少背景区域冗余锚框,降低后处理过程中的计算复杂度;引入GFocalLossV2损失函数统计预测边框分布特征,优化预测边框质量以及提升分类准确度。该模型在自制多类别工件数据集WP和Pascal VOC公开数据集上进行验证实验,改进模型的检测准确率分别达到99.5%、80.5%,检测速度分别达到39.8 FPS、38.3 FPS。实验结果表明,该轻量级目标检测模型能够实现实时检测,同时保证了检测精度。 相似文献
11.
12.
蝴蝶是一种对栖息地敏感的昆虫,自然环境中的蝴蝶种类分布反映了区域生态系统平衡和生物多样性.专家鉴别蝴蝶种类耗时耗力,计算机视觉技术为野外环境中蝴蝶种类自动识别提供了可能.针对野外环境下的蝴蝶图像特征,提出2种新的硬注意力机制,DSEA(direct squeeze-and-excitation with global average pooling)和DSEM(direct squeeze-and-excitation with global max pooling),改进经典目标检测算法RetinaNet,并引入可变形卷积增强RetinaNet对蝴蝶形变的建模能力,实现野外环境下蝴蝶种类自动识别.以mAP(mean average precision)目标检测指标评价模型性能,通过实验结果可视化,分析影响模型性能的关键因素.实验结果显示,提出的改进RetinaNet对自然环境下的蝴蝶识别任务具有很不错的效果, 特别是基于DSEM的RetinaNet;分布平衡的训练集可以提升提出模型的泛化性能;样本的结构相异性是影响模型性能的关键因素. 相似文献
13.
针对经典一阶段目标检测算法RetinaNet难以充分提取不同阶段特征、边界框回归不够准确等问题,提出一个面向目标检测的改进型RetinaNet算法。在特征提取模块中加入多光谱通道注意力,将输入特征中的频率分量合并到注意力处理中,从而捕获特征原有的丰富信息。将多尺度特征融合模块添加到特征提取模块,多尺度特征融合模块包括1个路径聚合模块和1个特征融合操作,路径聚合模块通过搭建自底向上的路径,利用较浅特征层上精确的定位信号增强整个特征金字塔的信息流,特征融合操作通过融合来自每个阶段的特征信息优化多阶段特征的融合效果。此外,在边界框回归过程中引入完全交并比损失函数,从边界框的重叠面积、中心点距离和长宽比这3个重要的几何因素出发,提升回归过程的收敛速度与准确性。在MS COCO数据集和PASCAL VOC数据集上的实验结果表明,与RetinaNet算法相比,改进型RetinaNet算法在2个数据集上的平均精度分别提高了2.1、1.1个百分点,尤其对于MS COCO数据集中较大目标的检测,检测精度的提升效果更加显著。 相似文献
14.
针对高铁无砟轨道板表面裂缝尺度差异大、裂缝类别不平衡等问题,提出了基于改进RetinaNet的裂缝检测方法。为了缓解下采样与特征金字塔横向连接压缩而导致的细微信息丢失的问题,利用多级特征金字塔融合ResNet-50主干网络中提取的不同层次的深浅特征,实现了图像特征信息的充分表达;为了解决检测过程中表面裂缝的分类和定位置信度之间不匹配的问题,提出自适应锚点学习使锚点与网络模型同时进行优化,提高了对小尺度裂缝的检测精度;为了缓解裂缝类别不平衡对检测性能的影响,引入焦点损失函数(Focal Loss)作为分类损失函数,并在其中添加类平衡权重项因子,提升了对小类别裂缝的检测精度。实验结果表明,改进RetinaNet检测网络对高铁无砟轨道板不同类别的裂缝均获得了较好的效果,平均检测精度(mAP)达到72.58%,较之原始RetinaNet检测网络提高了3.60个百分点,有效实现了对不同尺度裂缝的准确检测。 相似文献
15.
三维人体目标检测在智能安防、机器人、自动驾驶等领域具有重要的应用价值。目前基于雷达与图像数据融合的三维人体目标检测方法主要采用两阶段网络结构,分别完成目标概率较高的候选边界框的选取以及对目标候选框进行分类和边界框回归。目标候选边界框的预先选取使两阶段网络结构的检测准确率和定位精度得到提高,但相对复杂的网络结构导致运算速度受到限制,难以满足实时性要求较高的应用场景。针对以上问题,研究了一种基于改进型RetinaNet的三维人体目标实时检测方法,将主干网络与特征金字塔网络结合用于雷达点云和图像特征的提取,并将两者融合的特征锚框输入到功能网络从而输出三维边界框和目标类别信息。该方法采用单阶段网络结构直接回归目标的类别概率和位置坐标值,并且通过引入聚焦损失函数解决单阶段网络训练过程中存在的正负样本不平衡问题。在KITTI数据集上进行的实验表明,本文方法在三维人体目标检测的平均精度和耗时方面均优于对比算法,可有效实现目标检测的准确性和实时性之间的平衡。 相似文献
16.
单边侧入式大尺寸导光板存在网点分布不均、缺陷大小与形态不一、背景纹理复杂等特点, 而人工选取特征的传统机器视觉方法泛化能力不强. 基于此, 本文提出一种基于改进YOLOv3的大尺寸导光板缺陷检测方法. 首先, 在网络浅层特征层引入改进多分支RFB模块, 增大网络感受野, 丰富目标语义信息, 加强特征提取能力; 其次, 利用深度可分离卷积替换标准卷积, 缩减模型大小和计算量; 进而, 改进K-means算法, 对聚类出的锚框进行线性缩放, 使之更加贴近真实框; 最后, 利用在生产现场采集的大尺寸导光板缺陷图片进行了大量的实验研究. 实验结果表明, 本文提出的检测算法平均精度达到98.92%. 与YOLOv3相比, 平均准确率、F1值分别提升了8.55%、10.76%, 检测速度达到71.6 fps, 可满足工业生产检测要求. 相似文献