共查询到17条相似文献,搜索用时 57 毫秒
1.
针对多视角数据间互补与一致特性难以刻画问题,提出一种基于图卷积神经网络的多视角聚类方法.通过对样本不同视角间相同邻接子图基于图卷积神经网络学习到的表达进行约束,有效挖掘了多视角数据间的一致特性.通过共享图卷积神经网络参数、学习不同视角完整邻接图嵌入表达并串接得到多视角表达,有效挖掘了多视角数据间的互补特性.对上述多视角... 相似文献
2.
人脸聚类是根据不同身份对人脸图像进行分组的方法,主要用于人脸标注和图像管理等领域.针对现有方法中存在大量冗余数据的问题,文中使用一种基于完全图约束和上下文关系进行链接预测的方法.该聚类算法基于图卷积神经网络进行链接预测,结合完全图约束筛选数据,同时在预测的过程中对链接关系进行不断的更新.实验结果显示,结合完全图约束的人脸聚类方法能够在减少冗余数据、加快运行速度的同时,提升聚类的准确率,从而提高聚类的整体效果. 相似文献
3.
随着数据量的增大,多视图聚类中出现带有缺失视图数据的情况愈发常见,此问题被称为不完备多视图聚类,而引入深度模型进行聚类通常可以获得比浅层模型更为出色的表现。本文提出一种新颖的深度不完备多视图聚类模型,称为改进的自步深度不完备多视图聚类。在该模型中,充分考虑多视图数据之间的互补性,利用基于多视图特性的最近邻填充方案将缺失视图补全。使用多个自编码器分别获取多个视图数据的低维潜在特征,同时引入图嵌入策略保持潜在特征之间的几何结构。运用一致性原则将来自不同的视图潜在特征融合以获得一致潜在特征,在此基础上运用自步学习的方法来增强聚类效果。实验结果表明,对比现有的不完备多视图聚类模型,本文模型可以更加灵活且高效地应对各种不完备多视图聚类情况,提升了不完备多视图聚类的鲁棒性与表现效果。 相似文献
4.
随着数据采集技术的发展,多视图数据变得越来越常见。与单视图数据相比,多视图数据包含更丰富的信息,通常用一致性与多样性来刻画。现有基于图的多视图聚类方法大多只关注视图间的一致性信息,忽视了视图间的多样性信息,并且图的构建与聚类过程分离,从而影响聚类算法的效果。提出基于多样性与一致性的单步多视图聚类算法(OMCDC)。基于“距离较近的数据点成为邻居的可能性较大”这一先验知识构建各个视图的相似性图。不同于以往算法直接融合相似性图获得公共图,OMCDC将每个视图的相似性图分解为一致性图和多样性图,通过融合一致性图获得更具一致性的公共图。在此基础上,引入谱旋转,联合优化低维谱嵌入和聚类概率矩阵,将图学习和聚类融为一体,直接获得聚类结果。OMCDC充分利用了多视图数据的一致性信息与多样性信息,结合谱旋转实现了单步多视图聚类。实验结果表明,该算法在100L和HW2数据集上的聚类准确率分别为94.62%和99.30%,相比MVGL、AWP、MCGC等方法具有较优的聚类性能。 相似文献
5.
现有多视图子空间聚类算法通常先进行张量表示学习, 进而将学习到的表示张量融合为统一的亲和度矩阵. 然而, 因其独立地学习表示张量和亲和度矩阵, 忽略了两者之间的高度相关性. 为了解决此问题, 提出一种基于一步张量学习的多视图子空间聚类方法, 联合学习表示张量和亲和度矩阵. 具体地, 该方法对表示张量施加低秩张量约束, 以挖掘视图的高阶相关性. 利用自适应最近邻法对亲和度矩阵进行灵活重建. 使用交替方向乘子法对模型进行优化求解, 通过对真实多视图数据的实验表明, 较于最新的多视图聚类方法, 提出的算法具有更好的聚类准确性. 相似文献
6.
现有的深度多视图聚类方法存在以下缺点:1)在对单一视图进行特征提取时,只考虑了样本的属性信息或结构信息,而没有将二者进行融合,导致提取到的特征不能充分表示原始数据的潜在结构;2)将特征提取与聚类划分为两个独立的过程,没有建立两者间的联系,因此无法利用聚类过程优化特征提取过程。针对以上问题,提出一种深度融合多视图聚类网络(DFMCN)。首先,结合自编码器和图卷积自编码器融合样本的属性信息和结构信息,获取每个视图的嵌入空间;然后,通过加权融合获取融合视图嵌入空间并在此空间中进行聚类,并且在聚类过程中采用双层自监督机制优化特征提取过程。在FM(Fashion-MNIST)、HW(HandWritten numerals)、YTF(You Tube Face)数据集上的实验结果表明:DFMCN的准确率高于所有对比方法;在FM数据集上,DFMCN的准确率比次优的CMSC-DCCA(Cross-Modal Subspace Clustering via Deep Canonical Correlation Analysis)方法提高了1.80个百分点,标准化互信息(NMI)高于除CMSC-DCCA... 相似文献
7.
现有的多视图聚类算法往往缺乏对各视图可靠度的评估和对视图进行加权的能力,而一些具备视图加权的多视图聚类算法则通常依赖于特定目标函数的迭代优化,其目标函数的适用性及部分敏感超参数调优的合理性均对实际应用有显著影响。针对这些问题,提出一种基于视图互信息加权的多视图集成聚类(MEC-VMIW)算法,主要过程可分为两个阶段,即视图互加权阶段与多视图集成聚类阶段。在视图互信息加权阶段,对数据集进行多次随机降采样,以降低评估加权过程的问题规模,进而构建多视图降采样聚类集合,根据不同视图的聚类结果之间的多轮互评得到视图可靠度评估,并据此对视图进行加权;在多视图集成聚类阶段,对各个视图数据构建基聚类集合,并将多个基聚类集合加权建模至二部图结构,利用高效二部图分割算法得到最终多视图聚类结果。在若干个多视图数据集上的实验结果验证了所提出的多视图集成聚类算法的鲁棒聚类性能。 相似文献
8.
使用特定数学模型的路由转发算法难以满足用户多样化的服务质量需求,基于深度学习的智能路由方案因具有准确性、高效性、通用性等优势,成为路由决策的发展方向。然而,目前多数智能路由算法在网络拓扑动态变化时需要重新训练,造成路由更新不及时,难以应对网络拓扑动态变化。提出一种基于图卷积神经网络(GCN)的智能路由算法。线下利用提前采集的网络信息,根据路由开销标签训练GCN智能路由模型,通过该模型输出单跳路由开销。线上采集实时信息并根据模型输出的路由开销结果对网络层路由协议进行调整,计算最小路由开销的路由路径,实现自适应网络更新。算法利用GCN的图数据结构处理不规则的网络拓扑,通过图卷积算子自动提取特征解决路由网络多属性参数提取的问题,同时引入模糊C均值算法进行网络状态离散化分析,为数据集生成标签,从而有效监督GCN模型训练。实验结果表明,该算法较ECMP、DRL-TE和SmartRoute算法路由性能更好,其平均丢包率、时延和吞吐量指标均为最优,且相较于单一的流量模式具有更强的泛化能力。 相似文献
9.
10.
多视图聚类旨在从不同视图的多样性信息中, 学习到更加全面和准确的共识表示, 以提高模型的聚类性能. 目前大部分多视图聚类算法采用希尔伯特-施密特独立性准则(HSIC)或自适应加权方法从全局考虑各视图的多样性, 忽略了各视图样本之间的局部多样性信息学习. 针对上述问题, 提出了多样性引导的深度多视图聚类算法. 首先, 提出了融合多头自注意力机制的软聚类模块, 多头自注意力机制用来学习全局多样性, 软聚类模糊C均值算法用来学习局部多样性; 其次, 在深度图自编码器网络结构中引入软聚类模块, 以达到多样性信息引导潜在表示生成的目的; 然后, 将得到的各视图潜在表示进行加权融合得到共识表示, 并采用谱聚类算法对共识表示进行聚类; 最后, 在3个常用数据集上进行了对比实验和消融实验. 实验结果表明, 提出的聚类算法具有良好的聚类效果, 以及提出的多样性信息学习模块可以有效提高算法聚类性能. 相似文献
11.
传统多视角聚类都基于视角完备假设, 要求所有样本的视角信息完整, 不能处理存在部分视角缺失情形下的不完整多视角聚类任务. 为解决该问题, 提出一种基于低秩张量图学习的不完整多视角聚类方法. 为了恢复相似图中缺失视角所对应的样本关联信息, 该方法将低秩张量图约束和视角内在图保持约束融入到多视角谱聚类模型. 通过在一个统一模型中同时挖掘视角间的互补信息和视角内未缺失样例的关联信息, 所提出的方法能够得到表征样例邻接关系的完整相似图和视角间一致的最优聚类指示矩阵. 与12种不完整多视角聚类方法进行实验对比, 实验结果表明所提出的方法在多种视角缺失率下的5个数据集上获得了最好的聚类性能. 相似文献
12.
13.
近年来,图神经网络模型因其对非欧氏数据的建模和对全局依赖关系的捕获能力而广泛应用于文本分类任务。现有的基于图卷积网络的分类模型中的构图方法存在消耗内存过大、难以适应新文本等问题。此外,现有研究中用于描述图节点间的全局依赖关系的方法并不完全适用于分类任务。为解决上述问题,该文设计并提出了基于概率分布的文本分类网络模型,以语料库中的词和标签为节点构建标签-词异构关系图,利用词语在各标签上的概率分布描述节点间的全局依赖关系,并通过图卷积操作进行文本表示学习。在5个公开的文本分类数据集上的实验表明,该文提出的模型在有效缩减图尺寸的同时,相比于其他文本分类网络模型取得了较为先进的结果。 相似文献
14.
多视角聚类通过利用多视角之间的互补性和一致性信息来提高聚类的性能.近年来受到越来越多的关注.为了及时掌握目前基于图的多视角聚类算法的研究现状与最新技术,对大量的、最新的多视角图聚类进行调查、归纳整理、分类及总结.根据多视角聚类涉及的算法机制和数学原理,并进一步分为基于图、基于网络和基于谱的聚类方法.不仅详细介绍了每一类... 相似文献
15.
16.
运动想象识别将大脑的神经活动信号转为编码输出以实现意念控制,是脑机接口的一个重要研究方向.近年来深度学习算法的应用进一步提高了运动想象识别的准确率,但是当前基于深度学习的运动想象分析都将多路脑电信号作为二维矩阵信号,忽视了不同节点的空间关联信息.为了解决这个问题,将图卷积网络算法应用到运动想象分类中,通过多个节点脑电信... 相似文献
17.
异质图神经网络作为一种异质图表示学习的方法,可以有效地抽取异质图中的复杂结构与语义信息,在节点分类和连接预测任务上取得了优异的表现,为知识图谱的表示与分析提供了有力的支撑.现有的异质图由于存在一定的噪声交互或缺失部分交互,导致异质图神经网络在节点聚合、更新时融入错误的邻域特征信息,从而影响模型的整体性能.为解决该问题,提出了多视图对比增强的异质图结构学习模型.该模型首先利用元路径保持异质图中的语义信息,并通过计算每条元路径下节点之间特征相似度生成相似度图,将其与元路径图融合,实现对图结构的优化.通过将相似度图与元路径图作为不同视图进行多视图对比,实现无监督信息的情况下优化图结构,摆脱对监督信号的依赖.最后,为解决神经网络模型在训练初期学习能力不足、生成的图结构中往往存在错误交互的问题,设计了一个渐进式的图结构融合方法.通过将元路径图和相似度图递增地加权相加,改变图结构融合过程中相似度图所占的比例,在抑制了因模型学习能力弱引入过多的错误交互的同时,达到了用相似度图中的交互抑制原有干扰交互或补全缺失交互的目的,实现了对异质图结构的优化.选择节点分类与节点聚类作为图结构学习的验证任务,在4种... 相似文献