首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对目前进行瓦斯抽采模拟时大多忽略煤层含水的问题,建立了考虑气—水两相流的瓦斯抽采流固耦合模型。在瓦斯单相作用的基础上,考虑煤层水渗流及孔隙水压力所产生的影响,推导出相应的应力场方程和渗流场方程,并建立渗透率动态演化模型作为耦合模型,据此分析瓦斯—水运移规律。研究结果表明:考虑气—水两相流,产气速率具有峰值点;若不考虑水的影响,则将高估瓦斯抽采量;距钻孔越远,水对瓦斯运移的抑制作用越明显,且抑制作用大于因煤体自身有效应力减小、渗透率增大所带来的促进作用;煤层初始渗透率对瓦斯抽采具有决定性作用;煤层温度越高,瓦斯压力越不易降低,由温度增高引起的瓦斯解吸效应大于煤层自身的吸附应变效应。  相似文献   

2.
《煤炭技术》2017,(5):172-174
为了探究钻孔瓦斯抽采过程中瓦斯压力随时间的变化规律,通过建立流-固耦合模型,考虑渗透率、孔隙率和体积应变的动态变化,结合矿井煤层物性参数,运用多物理场软件进行了模拟分析。分析结果表明:随着抽采时间的延长,钻孔周围煤体瓦斯压力逐步降低,在瓦斯抽采过程中,瓦斯压力的降低有助于渗透率的提高,但影响效果甚微,埋藏深度对煤层渗透率起主导作用。  相似文献   

3.
基于弹性力学、渗流力学等理论,建立了地面井预抽瓦斯应力-渗流耦合模型,在此基础上结合工程实例,分析了地应力对瓦斯抽采效果的影响。计算结果表明:在地面井抽采作用下,煤层瓦斯压力不断减小,且地应力越大,瓦斯压力下降速度越慢;随着抽采的持续进行,造成煤体的有效应力增加和渗透率降低,同时由于瓦斯解吸,煤层孔裂隙重新变大和渗透率增加,2种效应共同作用下煤层渗透率总体呈现非线性增加趋势;地应力对地面井抽采效率影响显著,两者呈现负相关关系,即随着地应力的增加,煤层中的基质孔隙率下降和裂隙趋于闭合,造成煤层渗透性下降,最终导致了瓦斯抽采量的下降。  相似文献   

4.
为揭示瓦斯在深部煤层抽采时的渗流机理,基于深部煤层低渗透率、高地应力、高瓦斯压力特征,结合瓦斯运移的Klinkenberg效应,建立了考虑煤体基质、裂隙双重孔隙介质的瓦斯抽采气固耦合模型,并针对具体地质情况进行了耦合模型的数值模拟研究。结果表明:煤层瓦斯压力随抽采时间增长呈下降趋势,钻孔周围出现瓦斯压降漏斗现象,距钻孔越近瓦斯压力下降越明显。深部低渗透煤层瓦斯抽采过程中,煤层体积变形、瓦斯解吸共同影响煤层渗透率变化,瓦斯抽采使煤层瓦斯压力逐渐降低,煤体发生收缩变形导致渗透率增大,同时煤层有效应力增大,煤层中裂隙、基质受压变形,又会导致渗透率逐渐减小。  相似文献   

5.
综合考虑温度、压力对孔隙度、渗透率以及瓦斯流动对热传导的影响,结合质量守恒、力学平衡及能量守恒方程,在实验室对现场所取煤样分析了温度对瓦斯含量的影响,并建立了含瓦斯煤流-固-热三场耦合数学模型。以新疆某矿煤层赋存为背景,将模型导入COMSOL Multiphysics进行了单孔抽采煤层气的数值分析,得到煤层气抽采过程中压力场、渗透场的变化规律,以及温度、压力对渗透率的影响,结果表明:在瓦斯抽采过程中,考虑温度变化对煤层渗透率的影响是必要的。  相似文献   

6.
准确确定巷道预排瓦斯等值宽度,对于矿井瓦斯涌出量预测、抽采达标评判及提高掘进工作面瓦斯灾害防治效果具有重要意义。为了确定合理的巷道预排瓦斯等值宽度,推导了考虑应变软化和扩容特性的巷道周围煤体弹塑性力学模型,得到了巷道周围煤体应力及体积应变的解析表达式,以渗透率为桥梁建立了考虑巷道卸压及基质收缩效应的瓦斯运移耦合模型,得出了巷道周围煤体瓦斯运移规律及影响因素,确定了不同条件下的巷道预排瓦斯等值宽度。研究结果表明:巷道周围煤体瓦斯运移受到应力场和渗流场的控制,巷道卸压范围越大,其周围煤体渗透率提高得越多,越有利于瓦斯排放;排放时间、煤层透气性系数、地应力、煤体强度、支护应力、巷道尺寸和煤变质程度是影响巷道预排瓦斯等值宽的主要因素;排放时间60、120、180、240 d的巷道预排瓦斯等值宽度分别为9.2、11.9、13.8、15.3 m,随着排放时间的增加而增大;较难抽采煤层排放180 d的巷道预排瓦斯等值宽度小于15m,可以抽采煤层为15~20 m,容易抽采煤层厚度大于20 m,巷道预排瓦斯等值宽度随煤层透气性系数的升高逐渐增大;地应力、煤体强度、支护应力和巷道尺寸通过控制煤体变形而影响...  相似文献   

7.
《煤矿安全》2017,(5):180-183
为解决含水煤层条件下瓦斯不易解析、煤层渗透率低而造成的瓦斯抽采困难的难题,基于煤层的孔隙-裂隙双重介质模型结构,分别建立了煤层的孔隙渗透率和裂隙渗透率动态变化模型,得到了含水煤层瓦斯抽采的气-液-固多相耦合方程组,并通过数值模拟研究了在水平应力、煤质硬度和煤层含水等因素影响下的瓦斯抽采效果。研究结果表明:水平地应力越大时,煤体中裂隙的张开度较小,瓦斯抽采量就降低;煤层残余水分越多,渗透性越差,瓦斯抽采量越小。该模型可用于分析瓦斯抽采过程中的影响因素分析,也可用于煤层瓦斯抽采量的预测与预计。  相似文献   

8.
张磊  王浩盛  袁欣鹏  谷超 《煤炭工程》2022,54(7):104-108
为揭示煤岩变形对煤层瓦斯抽采渗流特性的影响,开展了煤层瓦斯抽采气固耦合问题研究。首先,考虑煤吸附解吸变形、孔隙压力及渗透性变化对瓦斯抽采的影响|然后,根据达西定律,建立以有效应力及吸附应变为耦合媒介的煤层瓦斯渗流和煤岩变形气固耦合方程|最后,以沙曲矿24208工作面为工程背景进行抽采煤层位移、吸附应变和瓦斯渗流数值模拟,并对比分析煤层瓦斯压力、煤层渗透率和瓦斯抽采量的耦合效应。结果表明:抽采后钻孔周围煤体位移呈增大趋势,煤体因瓦斯解吸收缩变形,距抽采孔越近应变量越大|抽采初期煤层瓦斯压降梯度大|煤层渗透率随抽采时间呈增大趋势,距孔越近增幅越大|初期钻孔瓦斯抽采量较大但降幅较快,后趋于稳定,对比发现模型抽采量计算结果与实际抽采数据较为一致。  相似文献   

9.
《煤矿安全》2016,(10):17-20
基于气固耦合理论,建立了地面井预抽瓦斯的气固耦合力学模型和数值计算模型,并分析了地应力、储层压力等因素对地面井预抽瓦斯效果的影响。计算结果表明:地应力与煤层产气率之间呈现非线性负相关关系。抽采前期瓦斯的产出速率随地应力的增大而显著变小,随着抽采的进行,地应力对产出速率控制性逐渐减弱;储层压力与瓦斯产气率呈正相关关系。煤层瓦斯压力越大,初始瓦斯抽采效率越高,抽采产量越大,随着抽采时间的增加,煤层瓦斯压力下降,瓦斯抽采效率迅速降低;瓦斯产出速率由煤体渗透率和储层瓦斯压力梯度两者共同决定,抽采初期前者对瓦斯产出速率的控制性占主导地位,随着抽采的进行前者对其控制性要逐渐小于后者。  相似文献   

10.
为了考虑长期抽采过程中时间效应对煤体渗透率的影响,结合平均有效应力建立了时间效应和气体解吸效应耦合作用下的深部煤体孔隙率及渗透率演化模型。运用COMSOL Multiphysics对钻孔周围瓦斯运移过程进行了定量计算,结合现场数据对是否考虑时间效应的瓦斯渗流场变化规律进行了对比分析,并对长期抽采过程中深部煤层瓦斯运移规律进行了模拟分析。结果表明:煤层渗透率随瓦斯压力的下降呈指数型上升趋势;考虑时间效应的孔隙率、渗透率模拟结果明显小于未考虑时间效应模型的结果,且随着抽采时间的增长,蠕变本构中的黏弹性元件使得煤体更为致密,深部煤层的时间效应越发明显,考虑时间效应的孔隙率、渗透率模拟结果与未考虑时间效应的结果差值逐渐增大;考虑时间效应的模拟结果与现场数据匹配度较高,更符合深部煤层孔隙率和渗透率的实际演化特征。在同一抽采时刻,随着距钻孔中心距离的减小,渗透率呈现升高的趋势,压力呈现降低的趋势,当模拟抽采时间为1 d时,临近钻孔中心处渗透率较大、瓦斯压力较小;在不同抽采时刻,当抽采时间逐渐增长时,相同位置处的渗透率逐渐增大,瓦斯压力逐渐减小,当抽采时间由1 d增至30 d时,临近钻孔中心处的渗透率增长近1. 4倍,瓦斯压力降低近3. 8倍,且模型内渗透率与瓦斯压力的演化趋于平衡状态。  相似文献   

11.
为研究钻孔瓦斯抽采渗流规律,为钻孔合理布置提供依据,提出了考虑气-水两相流的瓦斯抽采流固耦合模型。在多孔介质的有效应力原理基础上,考虑瓦斯吸附/解吸产生的应力,推导出煤体应力-应变本构关系;分析水和瓦斯运移的气-水两相流过程,以相对渗透率为桥梁,给出水渗流方程和考虑Klinkenberg效应的瓦斯渗流方程;构建作为耦合项的煤层孔隙率和渗透率动态演化方程,结合成庄矿4321工作面进行数值模拟。结果表明:成庄矿4321底抽巷穿层钻孔瓦斯抽采预抽期定为90 d是合理的,抽采过程中瓦斯渗流速度具有阶段性,增大抽采负压对抽采效果影响不明显;穿层钻孔布置方式为终孔间距9 m,钻场间距9 m。工程实践表明,测得的煤层瓦斯压力变化情况与数值模拟结果基本吻合,抽采后煤层瓦斯含量为6.46~7.67 m~3/t,43212巷瓦斯浓度降低了37%,抽采效果良好。  相似文献   

12.
为了探究影响射流割缝钻孔周围有效抽采区域变化的因素,基于煤体的各向异性考虑了瓦斯抽采过程煤体应变场和瓦斯渗流场的耦合作用,探讨了不同垂直地应力、初始瓦斯压力以及初始渗透率等参数对射流割缝钻孔有效抽采区域的影响规律。结果表明:垂直地应力越大,煤体的渗透率越低,有效抽采区域逐渐减小;初始瓦斯压力越大,抽采相同时间后瓦斯压力越难降至0.74 MPa以下,有效抽采区域逐渐减小;初始渗透率越大,煤体裂隙瓦斯流动速度越快,导致在相同抽采负压下有效抽采区域逐渐增大。各向异性煤体的模拟结果与现场测试结果基本相符,证明了各向异性煤层垂直层理方向有效抽采半径是现场布孔的合理指标。  相似文献   

13.
《煤炭技术》2017,(3):159-162
基于孔隙率的定义,建立了考虑孔隙瓦斯压力、瓦斯吸附膨胀和地应力作用的含瓦斯煤渗透率模型,并研究了抽采过程中含瓦斯煤渗透率的动态变化特征。结果表明:含瓦斯煤的渗透率随地应力的增加呈指数形式降低,随瓦斯压力的减少呈现出先减小后增大的变化特征;瓦斯抽采过程中煤体弹性模量越小和吸附常数越大越有利于煤体渗透率的改善,而泊松比的变化对煤体渗透率的影响较小,对于合理地选择瓦斯抽采区域、布置瓦斯抽采工程和采取瓦斯抽采措施具有一定的指导意义。  相似文献   

14.
运用自制的瓦斯渗透率测试装置,从吸附压力、吸附压差、吸附温度3方面研究了吸附作用对含瓦斯煤体中瓦斯渗透率的影响,同时试验模拟得出了瓦斯抽采渗透率的变化规律。结果表明:同一煤样随着吸附压力的增大,吸附量的增加,渗透率降低。相同吸附压力下,随着吸附温度的升高,渗透率降低。煤层抽采瓦斯以后压力下降,渗透率提高,与模拟试验得出的规律一致。  相似文献   

15.
为高效评价近距离突出煤层群水力冲孔卸压瓦斯抽采效果,基于弹性力学、渗流力学和Klinkenberg效应等理论,建立了包含煤岩变形、瓦斯运移、孔隙率和渗透率演化数学方程的低透气性含瓦斯煤气固耦合模型,采用COMSOL Multiphysics数值模拟软件模拟分析了近距离突出煤层群水力冲孔钻孔周围煤体瓦斯压力与孔径之间的时...  相似文献   

16.
长钻孔具有抽采流量大、抽放时间长的优点,但是由于钻孔长度过长,在瓦斯流动过程中会有负压衰减,负压衰减对抽采效果有着重要影响.通过对瓦斯赋存和瓦斯运移的研究,结合对煤体进行受力分析,根据有效应力原理和吸附膨胀内向应变推导孔隙率和渗透率的演化方程,建立了煤层瓦斯扩散-渗流的模型,得到了计算钻孔内各区段沿程阻力损失的公式.采...  相似文献   

17.
为了准确地研究钻孔抽采瓦斯过程瓦斯压力,渗透率等参数变化规律和相互影响机理,结合煤层瓦斯流动和煤体变形理论,考虑钻孔抽采过程中渗透率和孔隙度动态变化,建立了含瓦斯煤体变形的耦合模型,并与非耦合模型进行对比分析。  相似文献   

18.
根据瓦斯渗流场、地应力场与煤体变形场之间的耦合关系,建立了考虑Klinkenberg效应的瓦斯运移气固耦合模型。进行了不同出煤量条件下水力冲孔耦合模型的数值模拟研究,结果表明:水力冲孔有效半径随抽采时间与出煤量的增加而增加;Klinkenberg效应对低透气性煤层中瓦斯的运移起促进作用,随着抽采时间的增加其促进作用愈加显著;煤层瓦斯压力的降低促使煤体骨架受到的有效应力增加,煤体内孔隙被压缩,导致孔隙率与渗透率的降低。  相似文献   

19.
为了确定合理的有效抽采区域,首先建立了含瓦斯煤岩体的流-固耦合模型,然后建立几何模型,利用COMSOL Multiphysics软件进行数值解算,在考虑渗透率各向异性的基础上,研究钻孔周围不同位置的瓦斯压力变化规律。结果表明:考虑渗透率各向异性之后,瓦斯压力等值线图呈现出椭圆形状;渗透率各向异性会影响瓦斯在煤体中的运移,渗透率越低,瓦斯在煤层中运移越慢;达西速度与渗透率成正比,即渗透率增大,达西速度随之增大,渗透率各向异性使钻孔周围达西速度等值线呈椭圆分布,越靠近钻孔中心,达西速度越大,且随着时间的增加,达西速度最大值在减小;当钻孔周围瓦斯压力达到0.74 MPa时,受渗透率各向异性的影响其有效抽采区域呈现左右大、上下小的分布,瓦斯在渗透率小的地方难被抽采。  相似文献   

20.
随着矿井开采深度的增加,地应力、瓦斯压力、煤体特性等因素的变化对瓦斯渗流的影响越来越明显。根据钻孔抽放瓦斯的渗流特性与固体变形的基本理论,引入了固体力学和多孔介质流耦合的控制方程,同时考虑了分子滑脱效应对渗流的影响。建立了考虑抽放钻孔在不同的地应力、不同初始渗透率和不同抽放负压条件下,瓦斯运移与煤体变形相耦合作用的数学模型。通过研究钻孔抽放瓦斯过程中,在不同地应力和瓦斯压力的影响下,得出煤层渗透率和瓦斯运移的变化规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号