首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 116 毫秒
1.
The design, synthesis, and molecular modeling studies of a novel series of azacyclic ureas, which are inhibitors of human immunodeficiency virus type 1 (HIV-1) protease that incorporate different ligands for the S1', S2, and S2' substrate-binding sites of HIV-1 protease are described. The synthesis of this series is highly flexible in the sense that the P1', P2, and P2' residues of the inhibitors can be changed independently. Molecular modeling studies on the phenyl ring of the P2 and P2' ligand suggested incorporation of hydrogen-bonding donor/acceptor groups at the 3' and 4-positions of the phenyl ring should increase binding potency. This led to the discovery of compound 7f (A-98881), which possesses high potency in the HIV-1 protease inhibition assay and the in vitro MT-4 cell culture assay (Ki = approximately 5 pM and EC50 = 0.002 microM). This compares well with the symmetrical cyclic urea 1 pioneered at DuPont Merck.  相似文献   

2.
The synthesis and antithrombotic activity of a series of nonpeptide bicyclic thrombin inhibitors is described. We have explored the SAR with modifications to the P1 site. The introduction of arginine mimetics at the P1 site led to potent and selective thrombin inhibitors.  相似文献   

3.
HTLV-I is an oncogenic retrovirus that is associated with adult T-cell leukemia. HTLV-I protease and HTLV-I protease fused to a deca-histidine containing leader peptide (His-protease) have been cloned, expressed, and purified. The refolded proteases were active and exhibited nearly identical enzymatic activities. To begin to characterize the specificity of HTLV-I, we measured protease cleavage of peptide substrates and inhibition by protease inhibitors. HTLV-I protease cleavage of a peptide representing the HTLV-I retroviral processing site P19/24 (APQVLPVMHPHG) yielded Km and kcat values of 470 microM and 0.184 s-1 while cleavage of a peptide representing the processing site P24/15 (KTKVLVVQPK) yielded Km and kcat values of 310 microM and 0.0060 s-1. When the P1' proline of P19/24 was replaced with p-nitro-phenylalanine (Nph), the ability of HTLV-I protease to cleave the substrate (APQVLNphVMHPL) was improved. Inhibition of HTLV-I protease and His-protease by a series of protease inhibitors was also tested. It was found that the Ki values for inhibition of HTLV-I protease and His-protease by a series of pepsin inhibitors ranged from 7 nM to 10 microM, while the Ki values of a series of HIV-1 protease inhibitors ranged from 6 nM to 127 microM. In comparison, the Ki values for inhibition of pepsin by the pepsin inhibitors ranged from 0.72 to 19.2 nM, and the Ki values for inhibition of HIV-1 protease by the HIV protease inhibitors ranged from 0.24 nM to 1.0 microM. The data suggested that the substrate binding site of HTLV-I protease is different from the substrate binding sites of pepsin and HIV-1 protease, and that currently employed HIV-1 protease inhibitors would not be effective for the treatment of HTLV-I infections.  相似文献   

4.
As part of an ongoing effort to prepare therapeutically useful orally active thrombin inhibitors, we have synthesized a series of compounds that utilize nonbasic groups in the P1 position. The work is based on our previously reported lead structure, compound 1, which was discovered via a resin-based approach to varying P1. By minimizing the size and lipophilicity of the P3 group and by incorporating hydrogen-bonding groups on the N-terminus or on the 2-position of the P1 aromatic ring, we have prepared a number of derivatives in this series that exhibit subnanomolar enzyme potency combined with good in vivo antithrombotic and bioavailability profiles. The oxyacetic amide compound 14b exhibited the best overall profile of in vitro and in vivo activity, and crystallographic studies indicate a unique mode of binding in the thrombin active site.  相似文献   

5.
The development of peptidomimetic inhibitors of the human cytomegalovirus (HCMV) protease showing sub-micromolar potency in an enzymatic assay is described. Selective substitution of the amino acid residues of these inhibitors led to the identification of tripeptide inhibitors showing improvements in inhibitor potency of 27-fold relative to inhibitor 39 based upon the natural tetrapeptide sequence. Small side chains at P1 were well tolerated by this enzyme, a fact consistent with previous observations. The S2 binding pocket of HCMV protease was very permissive, tolerating lipophilic and basic residues. The substitutions tried at P3 indicated that a small increase in inhibitor potency could be realized by the substitution of a tert-leucine residue for valine. Substitutions of the N-terminal capping group did not significantly affect inhibitor potency. Pentafluoroethyl ketones, alpha,alpha-difluoro-beta-keto amides, phosphonates and alpha-keto amides were all effective substitutions for the activated carbonyl component and gave inhibitors which were selective for HCMV protease. A slight increase in potency was observed by lengthening the P1' residue of the alpha-keto amide series of inhibitors. This position also tolerated a variety of groups making this a potential site for future modifications which could modulate the physicochemical properties of these molecules.  相似文献   

6.
A novel class of thrombin inhibitors incorporating aminopyridyl moieties at the P1 position has been discovered. Four of these thrombin inhibitors (13b,c,e and 14d) showed nanomolar potency (Ki 0.8-12 nM), 300-1500-fold selectivity for thrombin compared with trypsin, and good oral bioavailability (F = 40-76%) in rats or dogs. The neutral P1 was expected to increase metabolic stability and oral absorption. Identification of this novel aminopyridyl group at P1 was a key step in our search for a clinical candidate.  相似文献   

7.
A series of novel spirocyclic ethers were designed to function as nonpeptidal P2-ligands for HIV-1 protease inhibitors. Incorporation of designed ligands in the (R)-(hydroxyethylamino)sulfonamide isostere afforded potent HIV protease inhibitors.  相似文献   

8.
A series of P1 C alpha gem-disubstituted succinamide hydroxamate matrix metalloproteinase inhibitors were prepared stereoselectively and evaluated in vitro for their ability to inhibit MMP-1, MMP-2, and MMP-3. It was found that while methyl/allyl substitution as in 2 and 18 provided compounds that were broad spectrum inhibitors and nearly equipotent with parent inhibitor 1, a larger group such as bis-allyl as in 13 or gem-cyclopentyl as in 14 significantly reduced enzyme inhibition.  相似文献   

9.
The 2-isopropyl thiazolyl group is a highly optimized P3 ligand for C2 symmetry-based HIV protease inhibitors, as exemplified in the drug ritonavir. Here we report that incorporation of this P3 ligand into a piperazine hydroxyethylamine series also yielded novel, highly potent inhibitors. In tissue culture assays, the presence of human serum was less deleterious to the activity of these inhibitors than to that of ritonavir. Furthermore, potent activity against ritonavir resistant HIV was observed.  相似文献   

10.
A series of p-aminomethylphenylalanine derivatives were investigated as novel thrombin inhibitors. This study led to potent inhibitors of thrombin (Ki up to 3.3 nM) that are trypsin-selective, highly orally bioavailable in rats, and highly permeable across Caco-2 cells. The P1 benzylamine binding mode in the thrombin active site was identified by X-ray crystallographic analysis.  相似文献   

11.
A combination of structure-activity studies, kinetic analysis, X-ray crystallographic analysis, and modeling were employed in the design of a novel series of HIV-1 protease (HIV PR) inhibitors. The crystal structure of a complex of HIV PR with SRSS-2,5-bis[N-(tert-butyloxycarbonyl)amino]-3,4-dihydroxy-1, 6-diphenylhexane (1) delineated a crucial water-mediated hydrogen bond between the tert-butyloxy group of the inhibitor and the amide hydrogen of Asp29 of the enzyme. Achiral, nonpeptidic 2-hydroxyphenylacetamide and 3-hydroxybenzamide groups were modeled as novel P2/P2' ligands to replace the crystallographic water molecules and to provide direct interactions with the NH groups of the Asp29/129 residues. Indeed, the symmetry-based inhibitors 7 and 19, possessing 3-hydroxy and 3-aminobenzamide, respectively, as a P2/P2' ligand, were potent inhibitors of HIV PR. The benzamides were superior in potency to the phenylacetamides and have four fewer rotatable bonds. An X-ray crystal structure of the HIV PR/7 complex at 2.1 A resolution revealed an asymmetric mode of binding, in which the 3-hydroxy group of the benzamide ring makes the predicted interaction with the backbone NH of Asp29 on one side of the active site only. An unexpected hydrogen bond with the Gly148 carbonyl group, resulting from rotation of the aromatic ring out of the amide plane, was observed on the other side. The inhibitory potencies of the benzamide compounds were found to be sensitive to the nature and position of substituents on the benzamide ring, and can be rationalized on the basis of the structure of the HIV PR/7 complex. These results partly confirm our initial hypothesis and suggest that optimal inhibitor designs should satisfy a requirement for providing polar interactions with Asp29 NH, and should minimize the conformational entropy loss on binding by reducing the number of freely rotatable bonds in inhibitors.  相似文献   

12.
13.
A series of novel unsymmetrical anthranilamide-containing HIV protease inhibitors was designed. The structure-activity studies revealed a series of potent P2-P3' inhibitors that incorporate an anthranilamide group at the P2' position. A reduction in molecular weight and lipophilicity is achieved by a judicious choice of P2 ligands (i.e., aromatic, heteroaromatic, carbamate, and peptidic). A systematic investigation led to the 5-thiazolyl carbamate analog 8 m, which exhibited a favorable Cmax/EC50 ratio (> 30), plasma half-life (> 8 h), and potent in vitro antiviral activity (EC50 = 0.2 microM).  相似文献   

14.
Renin inhibitors containing a 4,5- or a 3,5-dihydroxy-2-substituted-6-phenylhexanamide fragment at the P2-P3 sites have been prepared and evaluated. The four possible diastereomeric diols of the two series of inhibitors were synthesized to determine the optimal configuration of the carbinol centers for these replacements. The most potent inhibitors of each series, la and 2c have a molecular weight of only 503 and IC50 values of 23 and 20 nM in a human plasma renin assay at pH 6.0. Their very low aqueous solubility limited their further evaluation. The efficacy of these P2-P3 replacements is a result of their ability to maintain the important hydrogen-bonds with the enzyme. Due to conformational differences with the dipeptide, adjustment at the P2 side chain was required. These 4,5- and 3,5-dihydroxyhexanamide segments could be seen as novel N-terminal dipeptide replacements.  相似文献   

15.
The design and synthesis of a series of analogues of sialyl Lewis(x)(1) which incorporate conformationally rigid tetralin and naphthalene ring systems(2-4) has led to novel compounds which have similar potency to 1 as inhibitors of cell adhesion.  相似文献   

16.
Comparison of the high-resolution X-ray structures of the native HIV-1 protease and its complexes with the inhibitors suggested that the enzyme flaps are flexible. The movement at the tip of the flaps could be as large as 7 A. On the basis of this observation, cyclic cyanoguanidines have been designed, synthesized, and evaluated as HIV-1 protease (PR) inhibitors. Cyclic cyanoguanidines were found to be very potent inhibitors of HIV-1 protease. The choice of cyclic cyanoguanidines over cyclic guanidines was based on the reduced basicity of the former. X-ray structure studies of the HIV PR complex with cyclic cyanoguanidine demonstrated that in analogy to cyclic urea, cyclic cyanoguanidines also displace the unique structural water molecule. The structure-activity relationship of the cyclic cyanoguanidines is compared with that of the corresponding cyclic urea analogues. The differences in binding constants of the two series of compounds have been rationalized using high-resolution X-ray structure information.  相似文献   

17.
A series of new peptidyl (alpha-aminoalkyl)phosphonate diphenyl esters containing the 4-amidinophenyl group were synthesized and tested as irreversible inhibitors for thrombin and other trypsin-like enzymes. These phosphonates irreversibly inhibited several coagulation enzymes and trypsin. Boc-D-Phe-Pro-(4-AmPhGly)P(OPh)2 is the best human thrombin inhibitor in the series with a k(obs)/[I] value of 11,000 M-1 s-1, and it inhibits thrombin more than 5-fold more effectively than the other enzymes tested. Z-(4-AmPhGly)P(OPh)2 is the best inhibitor for plasma kallikrein with a k(obs)/[I] value of 18,000 M-1 s-1. Generally, the (4-AmPhGly)P(OPh)2 derivatives are better inhibitors of thrombin and trypsin than the corresponding (4-AmPhe)P(OPh)2 derivatives which contain an extra CH2 separating the amidinophenyl group from the peptide backbone. The amidino phosphonates did not inhibit acetylcholinesterase and were chemically stable in neutral buffers. In addition, the inhibited trypsin derivative did not regain any enzyme activity after removal of excess inhibitor and incubation in a pH 7.5 buffer for 1 day. Boc-D-Phe-Pro-(4-AmPhGly)P(OPh)2 and D-Phe-Pro-(4-AmPhe)P(OPh)2 prolonged the prothrombin time ca. 2-fold and prolonged the activated partial thromboplastin time ca. 3-4-fold in human plasma at concentrations of 63 and 125 microM, respectively. The novel amidine-containing peptidyl phosphonates reported here are thus effective anticoagulants in vitro, and they may have utility for use in vivo.  相似文献   

18.
HIV-1 protease-inhibitor treatments are associated with a syndrome of peripheral lipodystrophy, central adiposity, breast hypertrophy in women, hyperlipidaemia, and insulin resistance. The catalytic region of HIV-1 protease, to which protease inhibitors bind, has approximately 60% homology to regions within two proteins that regulate lipid metabolism: cytoplasmic retinoic-acid binding protein type 1 (CRABP-1) and low density lipoprotein-receptor-related protein (LRP). We hypothesise that protease inhibitors inhibit CRABP-1-modified, and cytochrome P450 3A-mediated synthesis of cis-9-retinoic acid, a key activator of the retinoid X receptor; and peroxisome proliferator activated receptor type gamma (PPAR-gamma) heterodimer, an adipocyte receptor that regulates peripheral adipocyte differentiation and apoptosis. Protease-inhibitor binding to LRP would impair hepatic chylomicron uptake and triglyceride clearance by the endothelial LRP-lipoprotein lipase complex. The resulting hyperlipidaemia contributes to central fat deposition (and in the breasts in the presence of oestrogen), insulin resistance, and, in susceptible individuals, type 2 diabetes. Understanding the syndrome's pathogenesis should lead to treatment strategies and to the design of protease inhibitors that do not cause this syndrome.  相似文献   

19.
Retinoic acid is one of the most promising drugs for chemotherapy and chemoprevention of cancer. Either blocking activator protein-1 (AP-1) activity or activating retinoic acid response element (RARE) have been proposed to be responsible for its antitumor activity. However, evidence for this hypothesis is lacking in vivo studies. To address this issue, we used an AP-1-luciferase transgenic mouse as a carcinogenesis model and new synthetic retinoids that are either selective inhibitors of AP-1 activation or selective activators of the RARE. The results showed that the SR11302, an AP-1 inhibition-specific retinoid, and other AP-1 inhibitors such as trans-retinoic acid and fluocinolone acetonide, markedly inhibit both 12-O-tetradecanoylphorbol-13-acetate-induced papilloma formation and AP-1 activation in 7,12-dimethyl benz(a)anthracene-initiated mouse skin (P < 0.05). In contrast, repeated applications of SR11235, a retinoid with RARE transactivating activity, but devoid of AP-1 inhibiting effect, did not cause significant inhibition of papilloma formation and AP-1 activation (P > 0.05). These results provide the first in vivo evidence that the antitumor effect of retinoids is mediated by blocking AP-1 activity, but not by activation of RARE.  相似文献   

20.
A systematic study of interleukin-1 beta converting enzyme (ICE, caspase-1) and caspase-3 (CPP32, apopain) inhibitors incorporating a P2-P3 conformationally constrained dipeptide mimetic is reported. Depending on the nature of the P4 substituent, highly selective inhibitors of both Csp-1 or Csp-3 were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号