首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results are presented for the reaction of aluminium metal with zirconia ceramics under (reducing) sintering conditions. During hot-pressing the principal phase formed is zirconium monoxide which is shown to have a rock-salt cubic structure and a unit-cell dimension of 0.46258 nm.When pressureless sintered or hot-pressed using a yttria partially-stabilised zirconia, composite structures of ZrO, alumina and cubic zirconia are produced which are the result of reduction reactions which proceed through the liquid metal phase. The results are interpreted through X-ray diffraction, microstructural and phase equilibria considerations which show that the sintering gas also plays a role in reaction through the oxygen partial pressure.The results allow calculation of an approximate value of the free energy of formation of zirconium monoxide (−294,500 J mol−1) which is consistent with the reported values for the monatomic carbide and nitride of zirconium and with other similar transition metal carbide, nitride and monoxide series.  相似文献   

2.
This study reports the pressureless sintering of cubic phase silicon carbide nanoparticles (β-SiC). Green blended compounds made of SiC nano-sized powder, a fugitive binder and a sintering agent (boron carbide, B4C), have been prepared. The binder is removed at low temperature (e.g. 800 °C) and the pressureless sintering studied between 1900 and 2100 °C. The nearly theoretical density (98% relative density) was obtained after 30 min at 2100 °C.The structural and microstructural evolutions during the heat treatment were characterised. The high temperatures needed for the sintering result in the β-SiC to α-SiC transformation which is revealed by the change of the composite microstructure. From 1900 °C, dense samples are composed of β-SiC grains surrounding α-SiC platelets in a well-defined orientation.TEM investigations and calculation of the activation energy of the sintering provided insight to the densification mechanism.  相似文献   

3.
Due to its inherent good physical and chemical properties silicon nitride has high potential to be used for load bearing implants. However, the standard sintering additives alumina and rare earth oxides are limiting the biocompatibility of the material. The aim of the current project is to exchange the additives for more biologically beneficial additives. Spark plasma sintered silicon nitride was manufactured with strontium or calcium as sintering aids. The ability of forming high strength β-phase microstructure silicon nitride was investigated. Powders were prepared with 10 and 30 wt.% glass phase and sintered at 1600, 1650, 1700 and 1750 °C. X-ray diffraction demonstrated compositions with 10 wt.% glass phase with strontium as sintering aid to yield larger amount of β-phase. The highest amount of β-phase (96% of the crystalline structure) was obtained using SPS for strontium-doped silicon nitride at sintering temperature 1750 °C, resulting in the highest fracture toughness, 4.2 MPa m1/2.  相似文献   

4.
《Ceramics International》2017,43(11):7970-7977
Boron carbide compacts were produced by pressureless sintering at 2200 °C/2 h and 2250 °C/2 h in Ar atmosphere, using a starting powder with a particle size smaller than 3 µm. Effects of carbon addition (3.5 wt%) and methanol washing of the starting powder were investigated on the densification, Vickers hardness, and micro-abrasive wear resistance of the samples. The removal of oxide phases by methanol washing allowed the production, with no sintering additive, of highly densified (93.6% of theoretical density), hard (25.4 GPa), and highly wear resistant (wear coefficient =2.9×10–14 m3/N.m) boron carbide compacts sintered at 2250 °C. This optimized combination of properties was a consequence of a reduced grain growth without the deleterious effects associated to the carbon addition. Methanol washing of the starting powder is a simple and general approach to produce, without additives, high quality, wear resistant boron carbide compacts by pressureless sintering.  相似文献   

5.
The influence that the atmosphere (N2 or Ar) and sintering time have on microstructure evolution in liquid-phase-sintered α-SiC (LPS-α-SiC) and on its mechanical properties at high temperature was investigated. The microstructure of the samples sintered in N2 was equiaxed with a grain size of 0.70 μm and a density of 98% of the theoretical value regardless of the sintering time. In contrast, samples sintered in Ar had an elongated-grain microstructure with a density decreasing from 99 to 95% and a grain size increasing from 0.64 to 1.61 μm as the sintering time increased from 1 to 7 h. The mechanical behaviour at 1450 °C showed the samples sintered in nitrogen to be brittle and fail at very low strains, with a fracture stress increasing from 400 to 800 MPa as the sintering time increased. In contrast, the samples sintered in Ar were quasi-ductile with increasing strain to failure as the sintering time increased, and a fracture stress strongly linked to the form and size of the grains. These differences in the mechanical properties of the two materials are discussed in the text. During mechanical tests, a loss of intergranular phase takes place in a region, between 50 and 150 μm thick, close to the surface of the samples—the effect being more important in the samples sintered in Ar.  相似文献   

6.
《Ceramics International》2017,43(6):5007-5013
The scope of this paper includes preparation and characterisation of dense silicon carbide matrix composites reinforced with multilayer graphene (MLG). Application of graphene as a reinforcement phase should simultaneously improve mechanical properties of SiC matrix composites and act as one of the sintering activators. In the present work the mechanical properties and the microstructure changes of samples sintered with different additions of graphene (0.5, 1, 2, 3, 4 wt%) and boron (0.3, 1 and 2 wt%) were examined. The composites were consolidated at two different temperatures (1800 °C and 1900 °C) using the Spark Plasma Sintering method (SPS). Reference samples with the addition of graphite as a source of carbon (1 and 3 wt%) were also sintered in the same conditions. The abovementioned amounts of graphite are an optimal content which is essential to obtain high density of samples [1], [2], [3], [4], [5], [6], [7], [8], [9]. The influence of MLG on density, mechanical properties and phase structure of the sintered samples were investigated. A high rate of densification for the composites with 0.3 wt% of B and 1 wt% of MLG sintered at 1900 °C was observed. Moreover, these composites showed the highest average of microhardness (2663 HV0.5) and single-phase structure.  相似文献   

7.
《Ceramics International》2017,43(13):9699-9708
ZrB2–SiC composite ceramics were doped with 0, 1, 3 and 5 wt% Si3N4 plus 1.6 wt% carbon (pyrolized phenolic resin) as sintering aids and fabricated by hot pressing process under a relatively low pressure of 10 MPa at 1900 °C for 2 h. For a comparative study, similar ceramic compositions were also prepared by pressureless sintering route in the same processing conditions, with no applied external pressure. The effect of silicon nitride dopant on the microstructural evolution and sintering process of such ceramic composites was investigated by a fractographical approach as well as a thermodynamical analysis. The relative density increased by the addition of Si3N4 in hot pressed samples as a fully dense composite was achieved by adding 5 wt% silicon nitride. A reverse trend was observed in pressureless sintered composites and the relative density values decreased by further addition of Si3N4, due to the formation of gaseous products which resulted in the entrapment of more porosities in the final structure. The formation of ZrC phases in pressureless sintered samples and layered BN structures in hot pressed ceramics was detected by HRXRD method and discussed by fractographical SEM-EDS as well as thermodynamical analyses.  相似文献   

8.
《Ceramics International》2016,42(14):15756-15761
The effect of pressureless sintering on the properties of magnesium orthosilicate-hydroxyapatite (MO-HA) ceramic has been studied. The amount of MO composition in the green body was varied from 10 wt% to 50 wt% through mechanical ball milling and was subsequently sintered at varying temperatures in air atmosphere from 1000 °C to 1300 °C for 2 h. The magnesium orthosilicate phase was stable during sintering but the hydroxyapatite phase decomposed to tricalcium phosphate. The MO-HA composites generally exhibited lower mechanical properties across all the investigated composition. Nevertheless, a high fracture toughness of 2.5 MPam1/2 was recorded for sintered body that contained 20 wt% MO. This finding indicates the potential of this ceramic composite to be used for biomedical applications.  相似文献   

9.
The effect of small Al addition on pressureless-sintering and mechanical properties of B4C ceramic was analyzed. Different amounts of aluminium powder, from 0% to 5 wt%, were added to the base material and pressureless-sintering was conducted at 2050 and 2150 °C under argon atmosphere. Microstructure, crystalline phases, density evolution, fracture strength, elastic modulus, hardness and fracture toughness were analyzed and correlated to Al additions and firing temperature. Density and grain size of sintered samples increased significantly with Al load while the effect of sintering temperature was less evident; 94% dense material was obtained by adding 4 wt% Al. Bending strength, hardness and fracture toughness of sintered B4C samples were shown to increase for Al content up to 4 wt% while further additions resulted in a decrease of the mechanical resistance. Conversely, elastic modulus showed an increase with Al load especially between 1 and 3 wt%.  相似文献   

10.
A pressureless sintering process, using a small amount of boron carbide (≤2 wt%) as sintering aid, was developed for the densification of hafnium diboride. Hafnium diboride ceramics with high relative density were obtained when the sintering temperature changed from 2100 °C to 2350 °C. However, the sintering mechanism was varied from solid state sintering (SSS, below 2300 °C) to liquid phase sintering (LPS, above 2300 °C). Boron carbide addition improved densification by removing the oxide impurities during solid state sintering and by forming a liquid phase which was well wetting hafnium diboride grains during liquid phase sintering process. The different roles of B4C on the microstructure development and mechanical properties of the sintered ceramics were investigated.  相似文献   

11.
The influence of additive composition on the electrical resistivity of hot-pressed liquid-phase sintered (LPS)-SiC was investigated using AlN–RE2O3 (RE = Sc, Nd, Eu, Gd, Ho, Er, Lu) mixtures at a molar ratio of 60:40. It was found that all specimens could be sintered to densities >95% of the theoretical density by adding 5 wt% in situ-synthesized nano-sized SiC and 1 wt% AlN–RE2O3 additives. Six out of seven SiC ceramics showed very low electrical resistivity on the order of 10?4 Ω m. This low electrical resistivity was attributed to the growth of nitrogen-doped SiC grains and the confinement of non-conducting RE-containing phases in the junction areas. The SiC ceramics sintered with AlN–Lu2O3 showed a relatively high electrical resistivity (~10?2 Ω m) due to its lower carrier density (~1017 cm?3), which was caused by the growth of faceted grains and the resulting weak interface between SiC grains.  相似文献   

12.
《Ceramics International》2017,43(18):16174-16177
Nickel oxide and Yttria-stabilized zirconia (NiO/YSZ) composite is one of the most promising mixed conducting electrode materials in both solid oxide electrolysis cell and solid oxide fuel cell applications. In this study, 50 wt% NiO and 50 wt% YSZ composite was synthesized via a modified glycine-nitrate combustion process (GNP) and the effect of sintering temperatures (1100 °C, 1300 °C and 1500 °C) on its microstructure and electrical properties were investigated. TG/DTA and in-situ high temperature XRD revealed the thermal property behavior and the structural changes of the as-combusted precursor material. For all the samples sintered at different temperatures, room temperature XRD patterns revealed a distinct cubic phases of both YSZ and NiO while SEM images showed a porous microstructure. The total conductivities at 700 °C are 9.87 × 10−3, 5.26 × 10−3, 4.02 × 10−3 S/cm for the 1100, 1300, and 1500 °C with activation energies of 0.1722, 0.3555, and 0.3768 eV, respectively. Conductivity measurements of the different sintered samples revealed that the total conductivities as well as the activation energies are greatly affected by different sintering temperatures.  相似文献   

13.
《Ceramics International》2017,43(12):9005-9011
Silicon carbide (SiC) ceramics have superior properties in terms of wear, corrosion, oxidation, thermal shock resistance and high temperature mechanical behavior, as well. However, they can be sintered with difficulties and have poor fracture toughness, which hinder their widespread industrial applications. In this work, SiC-based ceramics mixed with 1 wt% and 3 wt% multilayer graphene (MLG), respectively, were fabricated by solid-state spark plasma sintering (SPS) at different temperatures. We report the processing of MLG/SiC composites, study their microstructure and mechanical properties and demonstrate the influence of MLG loading on the microstructure of sintered bodies. It was found that MLG improved the mechanical properties of SiC-based composites due to formation of special microstructure. Some toughening mechanism due to MLG pull-out and crack bridging of particles was also observed. Addition of 3 wt% MLG to SiC matrix increased the Vickers hardness and Young's modulus of composite, even at a sintering temperature of 1700 °C. Furthermore, the fracture toughness increased by 20% for the 1 wt% MLG-containing composite as compared to the monolithic SiC selected for reference material. We demonstrated that the evolved 4H-SiC grains, as well as the strong interactions among the grains in the porous free matrices played an important role in the mechanical properties of sintered composite ceramics.  相似文献   

14.
By adding a small amount of tungsten carbide (WC) as sintering aids, nearly fully dense TiC ceramics were obtained by spark plasma sintering at 1450–1600 °C. The results show that the densification temperature of TiC ceramic was significantly decreased with the addition of 3.5 wt% WC. Compared with the monolithic TiC, the densification temperature of TiC–3.5 wt% WC is lower by ~150 °C and no deterioration of mechanical properties is observed. The TiC composite sintered at 1600 °C exhibits full density, a Vickers hardness of 28.2 ± 1.2 MPa, a flexural strength of 599.5 ± 34.7 MPa and a fracture toughness of 6.3 ± 1.4 MPa m1/2.  相似文献   

15.
In this study, porous SiC ceramics with interconnected huge plate-like grains were fabricated from oxidized β-SiC powder with 1 wt% B4C. When the β–α SiC phase transformation occurred at 2100 °C, rapid grain growth of α-SiC consumed the unstable β-SiC matrix resulting in an interconnected network structure with huge plate-like grains. The oxidation of β-SiC powder and the addition of B4C are necessary conditions for rapid grain growth. The observed results are discussed based on thermodynamic considerations. The measured porosity of the specimens sintered at 2100 °C for 30 min was 47% and the mean pore size was 6–7 μm. The strength of the sintered specimen was 45 ± 5 MPa.  相似文献   

16.
High density pressureless sintered silicon carbide bodies with yttria and alumina as sintering aids were obtained without sintering bed (LPSSC-NB). Sintering behavior of this material was studied between 1850 °C and 1950 °C and it was compared to the liquid phase sintered SiC material obtained using sintering bed (LPSSC-B). Sintered density was 97% of the theoretical density (T.D.) at 1875 °C. Mechanical properties like fracture toughness, hardness, flexural strength were determined and compared to other SiC-based materials. In this manner we were able to demonstrate that silicon carbide could successfully be sintered by means of liquid phase mechanism also without sintering bed. This fact opens liquid phase sintered silicon carbide to a wide range of industrial application.  相似文献   

17.
Commercial glass frits (lead borosilicate glasses) were employed as the sintering aids to reduce the sintering temperatures of BST ceramics. The effects of the glass content and the sintering temperature on the microstructures, dielectric properties and tunabilities of BST ceramics have been investigated. Densification of BST ceramics of 5 wt% glass content becomes significant from sintering temperature of 1000 °C. The glass content shows a strong influence on the Curie temperature Tc, permittivity and the diffuse transition. X-ray results show all BST ceramics exhibit a perovskite structure and also the formation of a secondary phase, Ba2TiSi2O8. The shift of BST diffraction peaks towards higher angle with increasing the glass content indicates the substitution of Pb2+ in Ba2+ site, which mainly accounts for the diffuse transition observed in these BST ceramics. BST ceramics with 10 wt% glass additives possess the highest tunability at all four sintering temperatures. A tunability of 12.2% at a bias field of 1 kV/mm was achieved for BST ceramics with 10 wt% glass content sintered at 900 °C.  相似文献   

18.
Aluminum nitride (AlN) ceramics with the concurrent addition of CaZrO3 and Y2O3 were sintered at 1450-1700 °C. The degree of densification, microstructure, flexural strength, and thermal conductivity of the resulting ceramics were evaluated with respect to their composition and sintering temperature. Specimens prepared using both additives could be sintered to almost full density at relatively low temperature (3 h at 1550 °C under nitrogen at ambient pressure); grain growth was suppressed by grain-boundary pinning, and high flexural strength over 630 MPa could be obtained. With two-step sintering process, the morphology of second phase was changed from interconnected structure to isolated structure; this two-step process limited grain growth and increased thermal conductivity. The highest thermal conductivity (156 Wm−1 K−1) was achieved by two-step sintering, and the ceramic showed moderate flexural strength (560 MPa).  相似文献   

19.
《Ceramics International》2016,42(7):8066-8071
A non-aqueous gel casting process based on the mixed solvent (ethanol and polyethylene glycol) and low-toxicity N,N-dimethylacrylamide (DMAA) was developed for an aluminum nitride (AlN) ceramic. In the present work, rheological properties of non-aqueous concentrated AlN suspensions were investigated in the presence of mixed solvent, dispersant, milling time, monomer and solid loading, in order to screen for the most suitable experimental conditions to obtain a good rheological behavior for gel casting. The results showed that the 50 vol% slurry with 0.2 wt% dispersant concentration, 2 h milling time, 6 wt% -monomer content, and a solvent ratio of 3:1, can meet the requirements for the casting process of AlN ceramic slurries. After being dried at 100 °C for 1 h, the optimum bulk density and maximum flexural strength of the AlN green bodies were as high as 1.97 g/cm3 and 18.68 MPa, respectively. SEM photographs revealed that the green body had a relative uniform microstructure when the solid loading was 50 vol%. The shrinkage and deformation of shaped sintered bodies prepared through gel casting were small after sintering. The sintering shrinkage, apparent porosity, bulk density and flexural strength were 14.8%, 0.22%, 3.21 g/cm3 and 310 MPa, respectively.  相似文献   

20.
CaTiO3 ceramics with the addition of CaO-B2O3-SiO2 (CBS) glass (45–55 wt%) composites were sintered at 830 °C, 850 °C, 875 °C and 900 °C. To illustrate influence mechanism of the different glass contents and sintering temperatures on the properties of the composites, we focused on the multiple performances of the composites by employing different qualitative and quantitative instruments. Composites with 50 wt% glass sintered at 875 °C presented fairly ideal performance: the bulk density was 3.20 g/cm3, the dielectric constant was 25.7 and the dielectric loss was 0.0009 at 7 GHz. Micro-Structure analysis of the composites showed a dense and pore-less microstructure except for few pores with size around 1 μm. In addition, the composite could meet the shrinkage requirement of Ag electrodes and could not possibly react with Ag electrodes any more. This makes them suitable for various dielectric applications at low sintering temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号